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ABSTRACT
Given a collection of flow cytometry data samples, consisting
of fluorescence measurements of proteins that characterize
different cell types, we describe an algorithm to dynamically
classify the samples into several classes based on their im-
munophenotypes. Each sample is initially clustered to iden-
tify the cell populations present in it. Using a combinatorial
dissimilarity measure between cell populations in samples,
we compute meta-clusters that correspond to the same cell
population across samples. The collection of meta-clusters
in a class of samples then describes a template for that class.
We organize the samples into a template tree, and use it to
classify new samples into existing classes or create a new
class if needed. As new samples are classified, we update
the templates and their statistical parameters so that the
new information is used to update the templates for the
classes. We have used our dynamic classification algorithm
to classify T Cell Phosphorylation data that shows increased
presence of the proteins SLP-76 and ZAP-70, which are in-
volved in a platform that assembles the signaling proteins
in the immune response. We have also used the dynamic
classification algorithm to show that variations in the im-
mune system in individuals is a larger effect than variations
in multiple samples from each individual.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Flow Cytometry, Classification, Clustering

Consider a collection of flow cytometry data samples, each
sample consisting of fluorescence measurements of protein
markers made at the single-cell level from hundreds of thou-
sands of cells, indicating different cell types present in each
sample. We describe an algorithm to dynamically classify
such samples into several classes based on the cell popula-
tions present in the samples. Each class is summarized by
means of a characteristic template that describes the cell
populations and their statistical parameters. We build the
class templates, organize the samples into a template tree
data structure, update the templates (and the statistical
parameters involved), and the template tree as new samples
are classified. Our algorithm makes use of a combinato-
rial dissimilarity measure to compare two samples based on
a mixed edge cover computed from a graph model of the
problem. It then uses a hierarchical merging and match-
ing algorithm similar in spirit to the UPGMA algorithm in
phylogenetics to build templates descriptive of classes from
multiple samples. The template tree is used to classify sam-
ples into different classes efficiently.

Flow cytometry is a platform for profiling the immune re-
sponses of biological samples, as the immune system re-
sponds to various stimuli, e.g., the development of the im-
mune system, or the immune respone to a pathogen, a drug,
or vaccine. The immune response is measured in flow cy-
tometry (FC) by quantifying the abundances of multiple
protein complexes (called Clusters of Differentiation, CD).
Fluorophore-conjugated antibodies are used to target marker
proteins on the surface or within the cells. The fluorescence
intensities due to binding of specific antibodies convey in-
formation about the type and levels of expression of each of
the protein markers per cell [22], and thus identify different
cell types in the sample. Recent advances in FC technol-
ogy allow us to measure the abundance of fifteen to twenty
proteins simultaneously in each cell from a sample contain-
ing millions of cells [16]. This technology is now routinely
used to understand how different kinds of immune cells de-
velop [18], how the immune system responds at multiple
levels to the presence of a pathogen, to clinically diagnose
diseases of the immune system [19], and to develop novel
vaccines (e.g., HIV) [21].



In conventional FC practice, cell populations are identified
by visualizing cells by means of a collection of two-dimensional
scatter plots (see Fig. 8 in this paper for an example). How-
ever, with the ability to monitor large numbers of protein
markers simultaneously, this approach is not feasible for
high-dimensional or high-throughput FC data. To address
this problem, many automated data clustering algorithms to
identify cell populations in FC samples have been described
by a number of researchers, and [1] provides a state-of-the-
art summary of the field. We extend this work to registration
and classification problems associated with a large collection
of samples. Here the cell populations with their statistical
descriptions in each sample have been identified with a clus-
tering algorithm, and we proceed to organize samples into
a few classes using these descriptions. As new samples are
acquired, we need to classify the new samples into existing
classes, or create new classes if needed. We also need to
update the class descriptions with the data from the new
samples.

Samples belonging to the same class are summarized by a
template, which represents a generalization of the sample’s
expression pattern [3, 11, 20]. The concept of cell clusters
or populations in a sample can be extended to meta-clusters
in a collection of similar samples, representing generic cell
populations that appear in each sample with some sample-
specific variation. A template is a collection of relatively ho-
mogeneous metaclusters commonly shared across samples of
a given class, thus describing the key immune-phenotypes of
an overall class of samples in a formal, yet robust, manner.
Given the inter-sample variations due to innate biological
variations among individuals or Poisson and Gaussian noise
from the FC measurements, a few templates can concisely
represent a large cohort of samples by emphasizing their
major characteristics while hiding statistical noise and un-
necessary details. Thereby, overall changes across multiple
conditions can be determined rigorously by comparing the
cleaner and fewer class templates rather than the large num-
ber of noisy samples themselves [3, 20]. We show that the
use of templates leads to efficient classification algorithms
as well.

Beside high-level visualization and cross-class comparisons,
templates can be used to classify new samples with unknown
status. In this paper we use this approach to classify sam-
ples in terms of their expression of markers of the immune
system. In the static classification approach, we build a
fixed number of templates each representing samples from a
particular class, and orgnize them into a template tree data
structure. A new sample is then predicted to come from a
class whose template is it most similar to. In the dynamic
classification approach, we update the templates and also
the template tree, as new samples are classified. Hence the
dynamic approach can be used to summarize and classify
samples when they are being continuously collected, as in a
flu epidemic. Another context where the dynamic classfica-
tion approach is useful is when the samples are collected at
a large number of hospitals or labs; the data at each hospital
can be analyzed in situ, and only the summaries (templates
and template trees) need to be shared among the hospitals,
thus avoiding issues with confidentiality.

We demonstrate the use of template-based classification on

two different datasets in this paper. The first dataset mea-
sures the differences in phosphorylation events before and
after stimulating T cells in human whole blood with an
anti-CD3 antibody. By creating pre-stimulation and post-
stimulation templates we are able to classify samples accord-
ing to their stimulation status. The second dataset studies
the natural variations among different subsets of cells in five
healthy individuals. Five technical replicates were created
from each subject, and we show that technical replicates
from each subject are correctly classified to the correspond-
ing template for the individual, thus showing that these tech-
nical variations are relatively small when compaed with the
natural biological variations across individuals.

Template based classification has been used in several ar-
eas such as face recognition, speech recognition, character
recognition, etc. In face recognition [6], a template library
is created with one or more digital images from each per-
son. When attempting recognition, an unclassified image is
compared in turn to each database image by computing cor-
relations of different features (eyes, nose, mouth etc.) and
is classified as the one giving the highest cumulative score.
In speech recognition [8, 9], a template is created for each
speaker by a sequence of consecutive acoustic feature vec-
tors and an incoming signal is classified by comparing it
with the templates using the Dynamic Time Warping al-
gorithm. In character recognition [7], representative proto-
types for each character are created from different writing
styles and an incoming character is classified by comparing
it to existing prototypes using feature matching algorithm.
Our approach has similarities to these approaches in princi-
ple but differs from them significantly in how the templates
are created, represented and compared to incoming samples.
In contrast to these approaches, we maintain a hierarchy
of the training samples in order to use their relationships
in future classifications. We represent a template with the
shared features of all samples in a class whereas the meth-
ods discussed above use representatives from the training
set. Furthermore, with the dynamic template algorithm we
continuously update templates as new samples are classified,
which improves the accuracy of future classifications.

Flow cytometry data is continuous, impacted by Poisson and
Gaussian noise, high-dimensional (each column corresponds
to a fluoresence from a protein being measured), and pro-
vides data at the single cell level for millions of intact cells
in a sample. Microarray data is similar in that it is continu-
ous, but corresponds to gene expression rather than protein.
Microarray data measures the expression of a large number
of genes under different conditions, whereas FC data mea-
sures a smaller number of proteins characteristic of a few
immunophenotypes, across a large number of samples due
to its lower cost and widespread clinical use. The nature of
the data, its pre-processing, and algorithms for downstream
analysis are all substantially different for the two technolo-
gies.

1. BACKGROUND
1.1 Identifying cell populations
A flow cytometry sample measuring the levels of expression
of p (protein) markers for n cells is represented by an n× p
matrix A. The matrix element A(i, j) represents the abun-
dance of the jth marker in the ith cell. Each sample consists



of several clusters of cells, with each cluster of cells express-
ing one or more phenotypes in the measured marker space.
Such a cluster of cells represents a particular cell type and is
called a cell population in cytometry. We model this collec-
tion of clusters with a finite mixture model of multivariate
normal distributions. In the mixture model, each cell popu-
lation is characterized by a multi-dimensional normal distri-
bution, represented by two parameters µ, the p-dimensional
mean vector, and Σ, the p× p covariance matrix [14].

We identify the cell populations in a sample and estimate
their distribution parameters by applying a two step clus-
tering algorithm (known as automated gating in flow cy-
tometry). In the first step, we identify the optimal num-
ber of cell clusters, k∗, by applying the k-means clustering
algorithm for a wide range of values for k, and select the
optimal number of clusters by optimizing both the Calinski-
Harabasz and S Dbw cluster validation criteria [13]. The
distribution parameters for each cluster are then estimated
using the Expectation-Maximization (EM) algorithm [15]
(with software obtained from Dr. Tsung-I Lin from Na-
tional Chung Hsing University, Taiwan, personal communi-
cation). We have used other clustering algorithms such as
the Dirichlet Process Mixture (DPM) model, and have ob-
tained similar results. We have also stabilized the variances
of the cell populations, and this is key step for downstream
statistical processing, but this will be discussed in another
publication [4].

1.2 Dissimilarity between cell populations
We can calculate the dissimilarity between a pair of cell pop-
ulations by any measure that computes the dissimilarity be-
tween a pair of multivariate probability distributions. In this
study, we used the symmetrized Kullback-Leibler (KL) di-
vergence, also known as the relative entropy in information
theory. Let c1(µ1,Σ1) and c2(µ2,Σ2) be the mean vector
and covariance matrix of two cell clusters modeled by nor-
mal distributions. The dissimilarity d(c1, c2) between the
pair of clusters c1 and c2 is the symmetrized KL-divergence
for normal distributions:

d(c1, c2) =
1

2
(µ1 − µ1)>(Σ−1

1 + Σ−1
2 )(µ1 − µ1)

+
1

2
tr(Σ−1

1 Σ2 + Σ−1
2 Σ1 − 2I). (1)

The symmetrized KL divergence is not a metric because
it does not satisfy the triangleinequality. Nevertheless, it
enables our goal of computing the dissimilarity between two
probability distributions.

1.3 Dissimilarity between a pair of samples
In the model described in Section 1.1, a sample is character-
ized by a mixture of cell populations. We compute the dis-
similarity between a pair of samples by optimally matching
(in a graph-theoretic model) similar cell clusters and sum-
ming up the dissimilarities of the matched clusters. How-
ever, it is possible for a cell population from one sample
either to be absent from another sample or to split into two
or more cell populations in the second sample. These can
happen due to biological reasons or due to errors in cluster-
ing. Thus it should be possible to match a cluster in one
sample to zero, one, or more clusters in a second sample to
compute the dissimilarity between the samples. We have

developed a robust variant of a graph matching algorithm
called the Mixed Edge Cover (MEC) algorithm that allows
a cluster to be matched with zero or more clusters in the
paired sample [2].

More formally, let S1 and S2 be two flow cytometry samples
characterized by mixtures of n1 and n2 cell populations such
that S1 = {c11, c12, ..., c1n1

}, and S2 = {c21, c22, ..., c2n2
}, where

cji (µ
j
i ,Σ

j
i ) is the ith cluster from the jth sample (here j=1 or

2). The mixed edge cover computes a correspondence mec,
of clusters across S1 and S2 such that mec(c1i ) ∈ P(S2) and
mec(c2j ) ∈ P(S1), where P(S1) (P(S2)) is the power set of

clusters in S1 (S2). When a cluster cji remains unmatched,

i.e., mec(cji ) = ∅, we set d(cji ,−) = λ where the cost λ is a
penalty for leaving a vertex unmatched in the mixed edge
cover, and is set to a value such that the number of such
clusters remains small. The cost of mec is the sum of the dis-
similarities of all pairs of matched clusters and the penalties
due to the unmatched clusters. A minimum weight mixed
edge cover is a mixed edge cover with the minimum cost.
We use the cost of a minimum weight mixed edge cover as
the dissimilarity D(S1, S2) between a pair of samples S1 and
S2:

D(S1, S2) = (2)

min
mixed edge
covers, mec

1

2

 ∑
c2k∈mec(c

1
j )

1≤j≤n1

d(c1j , c
2
k) +

∑
c1j∈mec(c

2
k)

1≤k≤n2

d(c1j , c
2
k)

 ,

where d(c1j , c
2
k) is computed from Equation (1).

Our dissimilarity measure between a pair of samples can be
compared with the partition distance (also called R-metric
or transfer distance) that computes the minimum number
of augmentations and removals of elements needed to trans-
form one partition of a sample into another [12]. However,
the partition distance compares two partitions (clusterings)
of the same sample whereas our measure can work with par-
titions from the same sample or two different samples. In
contrast to partition distance that matches a cluster to at
most one cluster, MEC is able to match a cluster to zero or
more clusters. The partitions distance does not accommo-
date the dissimilarities between elements in a natural way.

A mixed edge cover can be computed by a modified mini-
mum weight perfect matching algorithm in O(k3 log k) time
where k is the maximum number of clusters in a sample [2].
The number of cell clusters (k) is usually small ( fewer than
fifty in typical experiments), and the dissimilarity between
a pair of samples can be computed in seconds on a desktop
computer.

2. CLASSIFYING SAMPLES WITH STATIC
TEMPLATES

Given a collection of samples that can be grouped into a
few representative classes, we build a template to describe
each class. Different classes could represent different exper-
imental conditions, disease status, time points, etc. Just
as a sample is represented by a mixture of normal distribu-
tions corresponding to different cell populations, a template
is characterized by a finite mixture of normal distributions



corresponding to distinct cell populations. Each component
of a template is a meta-population or a meta-cluster, formed
by combining cell populations expressing similar phenotypes
in different samples. Hence a meta-cluster is characterized
by a normal distribution, with parameters computed from
the distributions of the clusters included in it. Note that
clusters in a meta-cluster represent the same type of cells and
thus have overlapping distributions in the measured marker
space.

We build templates from a collection of samples by a hier-
archical algorithm that repeatedly merges the most similar
pair of samples or partial templates obtained by the algo-
rithm thus far. The algorithm builds a binary tree called the
template-tree denoting the hierarchical relationships among
the samples. A leaf node of the template-tree represents a
sample and an internal (non-leaf) node represents a tem-
plate created from the samples. Figure 1 shows an example
of a template-tree created from four hypothetical samples,
S1, S2, S3, and S4. An internal node in the template-tree
is created by matching similar cell clusters with the MEC
algorithm across the two children and merging the matched
clusters into meta-clusters. For example, the internal node
T (S1, S2) in Figure 1 denotes the template from samples
S1 and S2. The mean vector and covariance matrix of a
meta-cluster are computed from the means and covariance
matrices of the clusters participating in the meta-cluster.

S1 S2 S3 S4 

Template  
T(S1, S2,S3,S4) 

Intermediate 
Template  
T(S1, S2) 

Intermediate 
Template  
T(S3,S4) 

Figure 1: An example of a hierarchical template tree
created from four hypothetical samples S1, S2, S3 and
S4. A leaf node of the template-tree represents a
sample and an internal (non-leaf) node represents
a template created from its children in the tree.
The children could be templates if they are interior
nodes, or samples if they are leaves.

2.1 Algorithm to construct a template-tree
We designed a hierarchical matching-and-merging (HM&M)
algorithm that builds a binary template-tree [3] from a given,
fixed, set of n samples. A node in the tree represents either
a sample (leaf node) or a template (internal node). In both
cases a node is characterized by a finite mixture of multi-
variate normal distributions each component of which is a
cluster or meta-cluster. Therefore, the dissimilarity of a pair
of nodes can be computed by the mixed edge cover discussed
in Section 1.3.

During the construction of a template-tree, a node is called
an “orphan” if it does not have a parent. Such an orphan

node could be one of the samples or one of the current tem-
plates. At each stage of the algorithm, the dissimilarity be-
tween each pair of orphan nodes is either computed with the
MEC algorithm, or it is unchanged from the previous stage,
and a pair of nodes (vi, vj) with the minimum dissimilarity
is merged to form a new node vk. The newly created node,
vk, represents a template and is assigned as the parent of vi
and vj .

Let a node vi consist of ni clusters or meta-clusters ci1, ci2,
. . ., cini

. The HM&M algorithm can then be described in
the following three steps:

1. Initialization: Create a node vi for each of the n samples
Si. Define the set of orphan nodes, Orphan = {v1, v2, ..., vn}.
Then repeat the matching and merging steps until a single
orphan node remains.

2. Matching : Compute the dissimilarity D(vi, vj) between
every pair of nodes vi and vj in the current Orphan set with
the mixed edge cover procedure described in Section 1.3.

3. Merging: Find a pair of orphan nodes, (vi, vj), with
minimum dissimilarity D(vi, vj). Create a new node vk =
{ck1 , ck2 , ..., cknk

} where each meta-cluster ckz , 1 ≤ z ≤ nk, is
formed by merging a group of matched clusters or meta-
clusters, {cix ∪ mec(cix)}; here x ranges over the metaclusters
in sample Si or subtemplate represented by node vi. The dis-
tribution parameters, (µk

z ,Σ
k
z), of each of the newly formed

meta-clusters ckz are estimated by the EM algorithm. The
height of vk is set to D(vi, vj). The node vk then becomes
the parent of vi and vj , and the set of orphan nodes is up-
dated by deleting vi and vj from it and including vk. If there
are orphan nodes remaining, then we return to the matching
step, and otherwise, we terminate.

2.2 Computational complexity of a template-
tree

Initially we need to compute O(n2) dissimilarities for each
pair of samples. Then the algorithm iterates n − 1 times
in order to create n − 1 internal nodes. Let |Orphani| be
the number of orphan nodes at the ith iteration. Then we
need to compute |Orphani| dissimilarity computations and
a merge operation at the ith iteration. Therefore we need
a total O(n2) dissimilarity computations and O(n) merge
operations. Let k be the maximum number of clusters or
meta-clusters in any of the nodes of the template-tree. Then
a dissimilarity computation takes O(k3 log k) time whereas
the merge operation takes O(kp) time when distribution pa-
rameters of the meta-clusters are computed by maximum
likelihood estimation. Therefore, the total time complexity
of the algorithm isO(n2k3 log k), which isO(n2) for bounded
k.

2.3 Creating static templates from a template-
tree

The height of an internal node in the template-tree is mea-
sured by the dissimilarity between its left and right children.
By recursion, a template denoted with a relatively lower in-
ternal node represents a relatively homogeneous collection
of samples and vice versa. Let a collection of samples be-
long to m classes. After building a template tree, we can cut



the tree at a suitable height so that m disjoint subtrees are
produced. The root of each subtree represents a template of
the samples placed in the leaves of that subtree. The class
(label) of a template is determined by the label of the ma-
jority of the samples in the subtree rooted at the template.
In the special case of all samples belonging to the same class,
a single template is generated from the root of the template
tree. However, if the number of classes m is not known a pri-
ori , we select m by the number of well-separated branches
based on the relative heights of the subtrees. The roots of
these well-separated subtrees represent the class-templates,
where within-class variations (heights of the subtrees) are
small relative to the between-class variations (heights of the
ancestors of the subtrees).

2.4 Classifying new samples with static tem-
plates

When the data set consists of samples belonging tom classes,
we build m templates, T1, T2, . . ., Tm, where the ith tem-
plate Ti represents samples of the ith class. When we obtain
a new sample S, we compute the dissimilarity D(S, Ti) be-
tween S and every template Ti. The new sample is predicted
to belong to the class whose template it is most similar (least
dissimilar) to:

i∗ = argmin
1≤i≤m

D(S, Ti), class(S) = class(Ti∗). (3)

If the sample’s dissimilarity with the closest template is
above a threshold, then it is not similar to any of the class
templates, and we need to create a new class for this sample.
We address this issue in the next subsection. The template
based classification is very fast because we need to compare
a new sample only with m templates instead of all the other
samples. The time complexity of a classification is therefore
O(mk3 log k), which is O(m) for bounded k. This is faster
than classifying the sample from scratch, since the n2 factor
from the number of samples in the complexity is reduced to
the number of templates, m.

3. BUILDING DYNAMIC TEMPLATES
3.1 The algorithm
The static template based classification method works well
in practice, but it has two limitations. First, the algorithm
needs to see all the samples in the training set before con-
structing the templates. However, frequently samples arrive
sequentially or in batches, as for instance in a longitudi-
nal study of an epidemic. Second and more important, the
algorithm builds static templates since it does not update
templates as new samples are classified. Therefore, future
classification can not use the information gained from sam-
ples classified after the building of the static template tree.

To address the aforementioned limitations we update the
templates dynamically. When a new sample arrives, we clas-
sify it and insert it into the current template-tree so that
future samples can be classified on the updated templates.
This approach also works when we do not have any training
dataset to start with. In that case we build the template-tree
as the samples are available in a dynamic fashion starting
with empty templates. Consider an existing template-tree
TT (possibly empty) with r as the root node. Note that r can
be considered as the template of all samples in the leaves of

the whole tree. In order to insert a new sample S in TT, we
first create a singleton node v from S. If TT is an empty tree
we make v the root of the template tree, and otherwise, we
insert v into the tree TT by invoking the procedure insert

shown in Figure 2 with r and v as the parameters.

The procedure insert works in a recursive fashion. It fol-
lows a path from the root to a node (a leaf or internal node),
to be identified by the algorithm, where the new node v is
inserted. The procedure then backtracks by updating the
mixtures of the internal nodes found in the return path back
to the root. We consider four cases while inserting v in a
subtree rooted at u. The cases are illustrated in Figure 3.
In the first case u is a leaf node, and we create a new node w
and make u and v the children of w. We create a template
from the samples in the leaves u and v and save it in node
w. In the other cases u is an internal node. Let ul and ur

be the left and right children of u, respectively. We compute
dissimilarities D(ul, ur), D(ul, v) and D(ur, v) between each
pair of nodes from ul, ur, and v. If D(ul, ur) is the smallest
among the three dissimilarities, then v cannot be inserted
in a subtree rooted at u. Thus we create a new node w and
make u and v the children of w. We create a new template
from the template u and sample v, save it in node w and re-
turn. When D(ul, v) is the smallest dissimilarity, we insert
v in a subtree rooted at ul by calling the procedure insert

with ul, v as parameters. In this case the left subtree of u
gets updated. Similarly, if D(ur, v) is the smallest then v is
inserted in the right subtree rooted at ur.

3.2 Computational complexity
To insert a new sample, we need to traverse a path starting
from the root to a leaf or an internal node in a template
tree. In the worst case the length of the traversed path
is the height of the template-tree. Let n be the number
of samples and h be the height of a template tree where
(n − 1) ≤ h ≤ log2(n). The former equality holds when
the tree is completely unbalanced (a chain) whereas the lat-
ter equality is satisfied when the tree is balanced. At each
node in the traversed path we need to compute three dissim-
ilarities and one update operation (when backtracking). A
dissimilarity computation takes O(k3 log k) time whereas an
update operation takes O(k3 log k)+O(kp) time when distri-
bution parameters of the meta-clusters are computed by the
maximum likelihood estimation. Thus the time complexity
of inserting a sample in a template tree is O(hk3 log k).

3.3 Classifying a sample
To classify a new sample S, we first insert it into the cur-
rent template tree. The class of S is predicted to be the
class of the template created from the subtree where S is
inserted. At the time of insertion the template-tree is dy-
namically updated to reflect the information gained from the
new sample. The dynamic template approach is especially
useful in unsupervised classification where the class labels
of the samples are not known in advance. In that case, the
class-templates are created from the well-separated subtrees
such that within-class variations (heights of the subtrees) are
small relative to the between-class variations (heights of the
ancestors of the subtrees). In this context, the algorithm is
similar to the spirit of the hierarchical clustering algorithm
UPGMA, with significant differences in the distance compu-
tation and management of the internal nodes. Furthermore,



1: procedure insert(u, v) . Insert leaf node v in the subtree rooted at u
2: if u is a empty then . Inserting in an empty tree
3: return v
4: end if
5: if u is a leaf then . Case 1
6: w ← empty node, wl ← u, wr ← v, x← w
7: else
8: D ← min{D(ul, ur), D(ul, v), D(ur, v)}
9: if D(ul, ur) = D then . Case 2

10: w ← empty node, wl ← u, wr ← v, x← w
11: else if D(ul, v) = D then . Case 3
12: ul ← insert(ul, v), x← u
13: else . when D(ur, v) = D, Case 4
14: ur ← insert(ur, v), x← u
15: end if
16: end if
17: update node x by matching and merging meta-clusters from xl and xr . Update node
18: height(x) = D(xl, xr)
19: return x . Going up in the tree
20: end procedure

Figure 2: Inserting a leaf node (sample) v in a subtree rooted at u (template or sample)

ul ur

(a) case 1

ul,v

u

ur,v

u

ulu v

w

(c) case 3 (d) case 4(b) case 2

u v

w

Figure 3: Four cases to consider when inserting a leaf node v into the subtree rooted at u. (a) case 1 (u is also
a leaf): a new internal node w is created and is made the parent of u and v, (b) case 2 ( u is a non-leaf and the
left and right children of u are more similar to each other than to v): a new internal node w is created and
is made the parent of u and v, (c) case 3 (u is a non-leaf and the left child ul of u is more similar to v than to
ur): insert v into the subtree rooted at ul by calling insert(ul, v), and (d) case 4 (u is a non-leaf and the right
child ur of u is more similar to v than to ul): insert v into the subtree rooted at ur by calling insert(ur, v).
The dotted parts in Subfigure (c) and (d) are determined by the insert function in a recursive fashion.

when a new sample is highly dissimilar to every existing tem-
plate, the algorithm automatically creates a new branch in
the tree indicating a new class. This approach therefore has
the ability to discover unknown classes from the incoming
samples, which, for example, is very useful in detecting new
stains of a disease.

How sensitive is the template tree to the order in which the
samples are inserted? Recall that we compute the template
tree by merging the most similar samples or sub-templates
from the samples available in the training set. Our expe-
rience is that if the between-class variation is significantly
higher than the within-class variation (as is the case in the
two datasets studied in this paper), the classification accu-
racy is unaffected by the small differences in the subtrees
of the template tree. We omit detailed results due to space
limitations.

4. RESULTS
4.1 Classifying stimulation status of T cells
We reanalyze the T Cell Phosphorylation (TCP) data from
Maier et al. to determine differences in phosphorylation
events downstream of T cell receptor activation in naive and
memory T cells [17]. For each of the 29 subjects in this study,
whole blood was stained using labeled antibodies against
CD4, CD45RA, SLP-76 (pY128), and ZAP-70 (pY292) pro-
tein markers before stimulation with an anti-CD3 antibody,
and another aliquot underwent the same staining procedure
five minutes after stimulation. During the stimulation anti-
CD3 antibody binds with T Cell Receptors (TCR) and ac-
tivates the T cells, initiating the adaptive immune response.
The binding with TCR induces dramatic changes in gene
expression and cell morphology, and induces the formation
of a phosphorylation-dependent signaling network via multi-
protein complexes. ZAP-70 is a kinase that phosphorylates
tyrosine in a trans-membrane protein called LAT, and LAT



and SLP-76 are part of a platform that assembles the sig-
naling proteins [5].
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Figure 4: Three dimensional projections of marker
expressions for a pair of samples from (a) before
anti-CD3 stimulation and (b) after anti-CD3 stim-
ulation. Each sample is clustered independently
to identify cell populations. The clusters are then
matched to show the effect of stimulation on differ-
ent cell subsets. Identical colors indicate matched
cell populations.

By using the clustering algorithm we have identified four
cell clusters in each of the 58 samples (29 pairs). Two of
these clusters represent memory (CD4+ CD45RAlow) and
naive (CD4+ CD45RAhigh) T cell subsets. Cell clusters are
then matched across stimulation using the MEC algorithm
to register the same cell type. The stimulated cells show in-
creased levels of SLP-76 as expected. (We also see increased
levels of ZAP-70, though it is not shown in the Fig.) For
visualization purposes, we plot a three dimensional projec-
tion of a pair of samples in Figure 4 where four cell clusters
are shown in different colors. We used same color to denote
matched cell clusters. By comparing the matched clusters
we can clearly see increased levels of SLP-76 and ZAP-70.

The 58 samples in this study group nicely into two distinct
classes: pre-stimulation and post-stimulation. For a pair of
samples from the ith subject, we denote the unstimulated
sample by i− and the stimulated sample by i+. We first ap-
ply the static template-based classification to demonstrate
how the classification works for this dataset. We divide the
samples into a training set and a test set. By using the
HM&M algorithm, we build a template-tree from the train-
ing set and create two class templates from the left and right
children of the root. An example is shown in Figure 5 where
the training set contains 6 pairs of samples. (Again, the
plots of the three proteins are shown for visualization only;
classification is performed using all of the protein markers.)

We cut the tree beneath the root and create two templates
Tpre and Tpost for the two classes of samples. The ith sam-
ple Si in the test set is predicted to come from the pre-
stimulation class when Si is more similar to Tbefore than
to Tafter (i.e., D(Si, Tbefore) < D(Si, Tafter)), and otherwise,
from the post-stimulation class. In Figure 5, we show a
sample from the test set above the two templates. The al-
gorithm correctly classifies it as a pre-stimulation sample,
and the correctness of the classification can be seen from

the visual inspection of the sample, since it looks similar to
the pre-stimulation template and does not show a phospho-
rylation shift in SLP-76.
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Figure 5: Sample classification based on static tem-
plates. The HM&M algorithm creates two tem-
plate, Tbefore for before-stimulation and Tafter for af-
ter stimulation classes, from 6 pairs of samples in
the TCP dataset. A new sample is compared with
the templates, and classified with the template it is
most similar to.

We study the accuracy of the template based classifier by
using cross-validation for this dataset. At each stage of the
cross-validation, we create a test set from ten samples and a
training set from the remaining 48 samples. After creating
templates from the training set, we predict the class of each
sample in the test set by comparing it with the templates. A
sample is considered to be misclassified when the predicted
class is different from the actual class. We repeat this pro-
cess 58 times for different collections of training and test sets
and compute the fraction of misclassified samples. We ob-
served that three pre-stimulation samples, 9-, 10- and, 11-,
were consistently classified with the after-stimulation class
whenever they were present in the test set. No other sample
is classified into a different class in the cross-validation. We
consider these three samples as outliers, show that they are
likely to have been pre-stimulated, and discuss their prop-
erties further in Section 4.1.2.

4.1.1 Classification with dynamic templates
In order to demonstrate our classification approach based
on dynamic templates, we build a template-tree incremen-
tally from the samples in the TCP dataset. We start with
an empty tree and insert the samples one after another into
the current tree by using the procedure described in Section
3. The complete template tree after inserting all samples is
shown in Figure 6. In this tree, we draw a subtree consist-
ing of samples from pre-stimulation in blue and from post-
stimulation in red. Aside from three outlying samples, all
samples create two well-separated branches of the root de-



noting the pre- and post-stimulation templates. The height
of an internal node in a template-tree is measured by the
dissimilarity between the pair of samples (templates) de-
noted by the left and right children of the internal node.
The height of the root in Figure 6 is more than twice of the
height of any other node. Hence the algorithm successfully
identifies two templates with small within-template devia-
tion while maintaining a clear separation between them.

A new sample S is inserted into the existing template-tree
by following the procedure described in Figure 2. At the
time of insertion the template-tree is dynamically updated
to reflect the information gained from the new sample. After
insertion, the position of S in the tree determines its pre-
dicted class. We classify S as a pre-stimulation sample when
it is placed in the left (blue) subtree and otherwise, classify
it as a post-stimulation sample. Similar to the classification
with static templates, we observe that all samples except 9-,
10- and 11-, are correctly classified.

4.1.2 Outlying samples
Now we discuss the three outlying pre-stimulation samples,
9-, 10- and 11-, which are consistently classified with the
post-stimulation samples by both the static and dynamic
classification algorithms. We show the dissimilarity between
every pair of samples in the dataset in a level plot in Figure
7, where a square is drawn in a lighter shade when a pair of
samples is similar, and in darker shade when a pair of sam-
ples is highly dissimilar. We observe that most squares in
the top-left and bottom-right quadrants are in light colors
indicating similarity among samples within pre- and post-
stimulation classes. However, three pre-stimulation samples,
9-, 10- and 11-, are more similar to the post-stimulation sam-
ples than to the pre-stimulation samples, suggesting that
these samples were in a stimulated state prior to the ex-
periment, and had higher levels of the SLP-76 and ZAP-70
proteins. Consequently they are classified with the post-
stimulations samples by the dynamic templates-based clas-
sification algorithm presented here. Thus it is clear that the
classification algorithm is working correctly in this instance
with the data input to it.

4.2 Classifying replicated samples from indi-
viduals

We further validated our approach by a “biological simu-
lation” where peripheral blood mononuclear cells (PBMC)
were collected from five healthy subjects, and each sample
was divided into five parts and analyzed through a flow cy-
tometer. Thus we have five technical replicates for each
subject, and each replicate was stained using labeled anti-
bodies against CD45, CD3, CD4, CD8, and CD19 protein
markers. Each sample was compensated for spectral overlap
across channels, and lymphocytes (CD45+) were identified
using forward and side scatter data. We then use a cell pop-
ulation identification algorithm for each sample separately,
and identified four cell types denoting (a) helper T cells
(CD3+CD4+), (b) cytotoxic T cells (CD3+CD8+), (c) B
cells (CD3−CD19+), and (d) natural killer cells (CD3−CD19−).
Figure 8 shows the bivariate projections of the four clusters
in a representative sample where different colors are used to
denote the cell types. Note that every one of these cell types
is CD45+ because we pre-selected lymphocytes.
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Figure 7: The level plot showing the dissimilarity
between every pair of samples in the TCP dataset
where the color of a square corresponds to the dis-
similarity of a pair of samples. A square is drawn in
a light shade when the pair of samples is similar, and
in a dark shade when the pair of samples is highly
dissimilar. The plot is symmetric about the main
diagonal.

Helper T cells 
(CD3+ CD4+) 

Cytotoxic T cells 
(CD3+ CD8+) 

B cells 
(CD3- CD19+) 

NK cells 
(CD3- CD19-) 

Figure 8: Bivariate projections of four clusters in a
sample from the healthy donor dataset. Each cell
cluster is CD45+ since we pre-selected lymphocytes
on the forward and side scatter channels. Four cell
types are shown in red (helper T cells), green (cy-
totoxic T cells), blue (natural killer cells) and black
(B cells).

After clustering each sample, we build a template tree from
the 25 samples in this dataset. We start with an empty
tree and insert the samples sequentially into the current
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tree by using the procedure described in Section 3. The
complete template tree is shown in Figure 9, where we see
that samples from the five subjects create five well-separated
branches. We can therefore construct five templates from
the roots of the five well separated branches where each tem-
plate denotes a summary representation of all samples from
a subject.

Intuitively we expect samples from each subject to be clas-
sified together. Here, the within-subject variations among
five replicates of a subject come from the technical variations
in flow cytometry sample preparation and measurement,
whereas between-subject variations come from the natural
biological variations in the healthy subjects. In this dataset
we observe more natural biological variation than the tech-
nical and instrumental variations. We visualize these vari-
ations with a levelplot in Figure 10. where the color of a
square indicates the dissimilarity of a pair of samples. A
square is drawn in a light shade when a pair of samples is
similar, and with a dark shade r when they are highly dis-
similar. We observe that samples from a subject are always
more similar to each other (5× 5 squares along the diagonal
with light colors) than they are across subjects (off diago-
nal squares). For this reason, samples from a subjects stay
together in the template-tree in Figure 9.

The observations from the healthy donor dataset confirm
that we can build immune profiles for individuals despite
within-subject variations from technical replicates. Addi-
tionally, the five templates from the five subjects create an-
other level of hierarchy and the root of the tree in Figure
9 is considered as a template from all healthy individuals.
This combined template represents a healthy immune pro-
file by preserving the common features of healthy individ-
uals and by removing between subject variations. Such a
healthy template can be compared against templates cre-

ated from diseased samples in order to diagnose diseases
and to perform comparative study of healthy and diseased
immune profiles.
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Figure 9: A dynamic template tree created incre-
mentally from samples in the healthy donor dataset.
The algorithm identifies five well separated branches
denoting templates for the five subjects. Subtrees
consisting of replicates from five subjects are shown
in five different colors. The height of a node mea-
sures the dissimilarity between its left and right chil-
dren.

5. CONCLUSIONS
We developed template based classification methods for flow
cytometry samples displaying different immunophenotypes.
A template built from samples of a class provides a concise
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description of the class by emphasizing the key character-
istics while masking statistical noise and low-level details,
and thus helps to measure overall changes in cell popula-
tions across different conditions. By moving beyond sample-
specific variations, the templates act as the blueprints for
different classes and can be used to classify future samples
to different classes in a more relevant parameter space. It is
also more efficient to classify a sample using templates rather
than all of the previously seen samples. We also maintain a
hierarchy of the samples in a template tree such that samples
can be analyzed in higher resolution whenever necessary. As
new samples come in, the templates are dynamically up-
dated to reflect the information gained from them. This is
a desirable property in dynamic siutations, as in the course
of an epidemic, when new samples are being collected and
analyzed.

In continuing work, we plan to investigate the use of net-
works instead of trees to organize the templates, similar in
spirit to the use of networks rather than trees in phylogenet-
ics [10]. Another issue is that the combinatorial dissimilarity
measure between two samples is not a metric, and when the
dissimilarity is extended to two templates, this value does
not monotonically increase in the hierarchical matching and
merging algorithm. Finally, dynamic classification is a crit-
ical step towards characterizing diverse states of the human
immune system from big datasets of samples collected at
geographically distributed laboratories, e.g., the Human Im-
munology Project Consortium (www.immuneprofiling.org).
Our work makes it possible to summarize the data from each
laboratory using templates for each class, and then to merge
the templates and template trees across various laboratories,

as the data is being continuously collected, summarized and
analyzed.
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