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Abstract

This study explores the class of Space-Time Autoregressive Moving Average (STARMA)
models in order to describe and identify the behavior of SO2 daily average concentrations
observed in the Greater Vitória Region (GVR), Brazil. These models are particularly
useful in modeling atmospheric pollution data owing to the complex pollutant dispersion
dynamics at temporal and spatial scales.

The data were obtained at the air quality monitoring network of GVR, recorded from
January 2005 to December 2009. Our findings indicate that SO2 daily averages tended to
be higher than the guidelines suggested by the World Health Organization (daily average of
20 µg/m3), for almost all the analyzed sites. The time series obtained for each monitoring
station show high variability, mostly caused by some atypical values observed during the
period. The main fluctuations in the data are caused by cyclical components, which change
from one to another station. On the whole, the cycles are not only weekly (as expected,
due to the daily measurements) but also monthly and seasonal.

Resampling bootstrap techniques were used in order to handle the lack of the distribu-
tional assumptions made for fitting the model. The obtained bootstrap prediction intervals
showed to be much larger than the intervals obtained under the Gaussian distribution as-
sumption.

The fitted STARMA model indicated that the permanence time of SO2 in GVR at-
mosphere is around 3-4 days. During the period observed, the pollutants released in a
site disperse over a large expanse of the region, influencing SO2 concentrations observed in
the vicinity. The quality of the adjusted model suggests that the model is able to predict
in-sample values, as well as to forecast average concentrations for one day in advance with
good reliability.

Keywords: air pollution, bootstrap, forecasting, space-time models, STARMA,

sulfur dioxide.
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1. Introduction

The GVR is located on the Brazilian South Atlantic coast in the state of Esṕırito

Santo (ES) and comprises of seven main cities, including the capital Vitória. Its

population has grown significantly in the last decades as a consequence of rapid

industrialization. The increase of the industrial activities, as well as the constat

grown of traffic (almost 50% increases from 2001 to 2011), has caused a large impact

on the atmospheric quality in the area.

Particularly, sulfur dioxide (SO2) is considered to be the major indicator of the

industrial activities in the area, where the mining and iron, as well as the steel

industries, contribute with almost 76% of SO2 released to the atmosphere (Instituto

Estadual de Meio Ambiente e Recursos Hı́dricos [IEMA], 2011). An overall view of

the air quality parameters in GVR shows that SO2 levels do not exceed the standard

levels established by the Brazilian law and there have not been any reported air

pollution alerts due to this pollutant. However, according to the Instituto Brasileiro

de Geografia e Estat́ıstica [IBGE] (2012), in 2010, Vitória was the city with the

highest annual SO2 average in Brazil.

Sulfur dioxide is the main precursor of acid rain and sulfuric acid smog pollution.

At the same time, it can be oxidized in the atmosphere to form sulfate aerosol, which

is an important component of fine particles suspended in the urban atmosphere.

Its reaction with other major atmospheric pollutants such as nitrogen oxide can

also affect the atmospheric concentrations of these pollutants. Therefore, SO2 is a

significant contributor to the quality of the environment (Yang et al., 2009).

In view of this pollution problem, it is important to develop statistical models

for diagnosis and short-term prediction in order to provide accurate early warnings

for the air quality control. As pointed out by McCollister and Wilson (1975), there

is also the possibility that foreknowledge of high pollution potential could be used

to reduce future atmospheric pollutant concentrations through timely reduction of

emissions by traffic control or industrial shut-down.

Several statistical modeling approaches have been proposed to describe trends

and forecasting SO2 levels (Brunelli et al. (2007, 2008), Castro et al. (2003), Chelani
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et al. (2002), Lalas et al. (1982), Nunnari et al. (2004), Perez (2001), Roca Pardiñas

et al. (2004), Tecer (2007), among others). The most of forecasting statistical models

for SO2 is based on univariate time series approaches. For example, Cheng and Lam

(2000), Hassanzadeh et al. (2009), Kumar and Goyal (2011), Lalas et al. (1982),

McCollister and Wilson (1975), Schlink et al. (1997). As explained by Turalioglu

and Bayraktar (2005), such models are incapable of providing regional information

on the spatial variations of air pollutants.

Some other researches have modeled the spatial scale and used data reduction

methods like principal component analysis to summarize the regional variation of

SO2 (Ashbaugh et al. (1984), Beelen et al. (2009), Ibarra Berástegui et al. (2009),

de Kluizenaar et al. (2001), Kurt and Oktay (2010), Zou et al. (2009)). However,

many of these spatial approaches do not account for the serial autocorrelation latent

in data measured over time.

Considering that the data used in the majority of the air pollution studies are

obtained from air quality monitoring networks, where the concentrations are observed

over various spatial locations along time, it is reasonable to model time and space

scales simultaneously aiming to capture explicitly the inherent uncertainty of the

air pollution type data. Particularly, for SO2 studies see Fan et al. (2010), Rouhani

et al. (1992), Turalioglu and Bayraktar (2005), Yu and Chang (2006) and Zeri et al.

(2011) among others.

In this context, the class of the space-time models is quite effective, allowing the

practician to obtain accurate forecasts of the pollution events and to interpolate the

spatial regions of interest. One of the most useful approaches of this kind of models,

yet less explored in air pollution studies, is the class of STARMA models. This

approach is an extension of the classic univariate ARMA time series models into the

spatial domain, where the observations at each location at a fixed time are modeled

as a weighted combination of past observations at different locations.

Our aim here is to explore the class of STARMAmodels as an alternative method-

ology to describe the dynamics of sulfur dioxide dispersion and to obtain short-term

forecasts of SO2 daily average in GVR, which can be used to direct new standards
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for air quality management policies and emission control at specific locations.

This paper is outlined as follows: Section 2 presents the main characteristics of

the region under the study as well as the description of the analyzed data. The three-

stage procedure for STARMA modeling is also introduced in this section. Section 3

describes the data processing and the results obtained for the fitted STARMA model.

Section 4 closes with a brief summary of the results obtained from the application

of the model.

2. Data and methodology

2.1. Study area

The GVR is located in the Brazilian South Atlantic coast (latitude 20◦19S, lon-

gitude 40◦20W). The climate is tropical humid with average temperatures ranging

from 23◦C to 30◦C. The rainfall occurs mainly from October to January, with annual

precipitation volume higher to 1400 mm.

Its topography varies from plains to mountain range interspersed with small and

medium size rocky massif, which favors the flowing of the humid winds from the sea

(Instituto Jones dos Santos Neves [IJSN], 2012). Therefore, the dispersion of the

pollutants is also favored over a large area of the region. Its main atmospherical

flowing systems are the South Atlantic subtropical anticyclone, which causes the

predominant eastern and northeastern winds, and the moving polar anticyclone,

responsible for the cold fronts from the southern region of the continent, characterized

by low temperatures, mist and strong winds (Instituto Estadual de Meio Ambiente

e Recursos Hı́dricos [IEMA], 2007).

The region is constituted by seven main cities: Vitória (capital city of ES), Serra,

Vila Velha, Cariacica, Viana, Guarapari and Fundão. These cities take almost half

of total population of Esṕırito Santo State (48%) and 57% of the urban population in

the State (Instituto Brasileiro de Geografia e Estat́ıstica [IBGE], 2012). According

to the IJSN, the region occupies only 5% of ES territory, however its population

density is nine times higher to the overall mean of State. Besides, it produces 58%

of the wealth and consumes 55% of the total electric power produced in the State.
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The GVR has two of the major seaports in Brazil: Vitória Port (located in

downtown) and Tubarão Port (located at the North region of Vitória). The main

industrial activities of GVR are related to iron and steel industry, stone quarry,

cement and food industries, among others. These activities represent nearly 55% to

65% of the total potentially pollutant fonts in the State (IEMA, 2011).

Figure 1: Map of the AAQMN monitoring stations in Greater Vitória Region.

In view of the increasing deterioration of the air quality, the IEMA installed the

Automatic Air Quality Monitoring Network (AAQMN) of GVR in 2000. Currently,

the network is composed of nine monitoring stations (the last one started operations

in September 2012), all of them located in strategic urban areas (see Figure 1).

The network measures continuously some meteorological variables as well as the

concentration of the pollutants: particular matter, fine particles < 10µm (PM10),

sulfur dioxide (SO2), carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3) and

hydrocarbons (HC).

2.2. Data

We analyzed daily average SO2 concentration (µg/m3) data from January 1, 2005

to December 31, 2009, obtained from seven AAQMN monitoring stations. The main

sources of pollutants of each monitoring station are summarized in Table 1. Aiming
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to ensure the reliability of our study, the monitoring stations having more than

30% missing values for the full analyzed period were discarded. Except for Jardim

Camburi station (36% missing values), all the stations met the criterion for inclusion

in the study.

Table 1:Description of the AAQMN monitoring stations in GVR.

Monitoring

station

Main pollution

sources
Longitude Latitude

Laranjeiras Industrial and traffic 40◦15’24.74”W 20◦11’26.88”S

Jardim Camburi Industrial and traffic 40◦16’06.49”W 20◦15’15.03”S

Enseada do Suá
Port of Tubarão and

traffic
40◦17’26.92”W 20◦18’43.29”S

Vitória Centro
Traffic, seaports, In-

dustrial
40◦20’13.87”W 20◦19’09.42”S

Ibes Traffic and industrial 40◦19’04.38”W 20◦20’53.47”S

Vila Velha Cen-

tro
Traffic and industrial 40◦17’37.77”W 20◦20’04.81”S

Cariacica Traffic and industrial 40◦24’01.59”W 20◦20’29.92”S

Font: IEMA

The missing values were filled using the Gibbs sampling for multiple imputations of

the incomplete multivariate data suggested by Aerts et al. (2002). This algorithm imputes

an incomplete column (in our case, each column corresponds to a monitoring station) by

generating plausible synthetic values given the other columns in the data. Each incomplete

column must act as a target column, and has its own specific set of predictors. The default

set of predictors for a given target consists of all other columns in the data set. All these

computations were made using the language and environment for statistical computing R

2.15.2 (R Core Team, 2012).

Once the database was filled, we calculated the 24-hour average concentrations. There-

fore, the analyzed database contains 1826 observations for the six monitoring stations
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(sites) considered here. The first 1811 observations were used for modeling purposes and

the last 15, corresponding to the last two weeks of the full period, were used for forecasting

purposes.

2.3. The STARMA Model

Spatial time series can be viewed as time series collected simultaneously in a number of

fixed sites with fixed distances between them. As pointed out by Subba Rao and Antunes

(2003), the space-time models are used to explain the dependence along time in situations

that present systematic dependence between observations in several sites.

The class of STARMA models was developed by Pfeifer and Deutsch (1980b). The

processes which can be represented by STARMA models are characterized by a single

random variable Zi(t), observed at N fixed spatial locations (i = 1, 2, . . . , N) on T time

periods (t = 1, 2, . . . , T ). The N spatial locations can represent several situations, like

states of a country or regions with monitoring stations inside a city, for example.

The dependence between the N time series is incorporated into the model through

hierarchical weighting N ×N matrices, specified before the data analysis. These matrices

must include the relevant physical characteristics of the system into the model, as for exam-

ple, the distance between the center of several cities or the distance between monitoring

stations from a monitoring network (Kamarianakis and Prastacos, 2005).

As in the case of univariate time series, observations zi(t) from the process {Zi(t)}, are

expressed in terms of a linear combination of previous observations and errors at the site

i = 1, 2, . . . , N . In this case, due to the spatial dependence of the system, the model must

incorporate also past observations and errors from the neighboring spatial orders. In this

paper, the first order neighbors are those sites which are closer to the location of interest,

the second order neighbors are those more distant than the first ones, even less distant

than the third order neighbors, and so on.

The STARMA model, denoted by STARMA(p
λ1,λ2,...,λp

, qm1,m2,...,mq
), can be represen-

ted by the matrix equation:

z(t) = −
p∑

k=1

λk∑
l=0

ϕklW
(l)z(t− k) +

q∑
k=1

mk∑
l=0

θklW
(l)ε(t− k) + ε(t), (1)

where z(t) = [z1(t), . . . , zN (t)]′ is a N × 1 vector of observations at time t = 1, . . . , T , p

represents the autoregressive order (AR), q represents the moving average order (MA), λk
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is the spatial order of the k−th AR term, mk is the spatial order of the k−th MA term,

ϕkl and θkl are the parameters at temporal lag k and spatial lag l, W(l) is the N × N

weighting matrix for the spatial order l, with diagonal entries 0 and off-diagonal entries

related to the distances between the sites. By definition, W(0) = IN and each row of W(l)

must add up to 1. It is assumed that ε(t) = [ϵ1(t), . . . , ϵN (t)]′, the random error vector at

time t, is a weakly stationary Gaussian process, with

E[ε(t)] = 0, (2)

E[ε(t)ε′(t+ s)] =


G, if s = 0

0, otherwise ,

E[z(t)ε′(t+ s)] = 0, for s > 0,

where E(·) is the expected value of the variable.

There are two subclasses of the model in Equation 1: STAR(p
λ1,λ2,...,λp

) when q = 0

and STMA(qm1,m2,...,mq
) when p = 0. The stationarity condition is based on:

det

(
IN +

p∑
k=1

λk∑
l=0

ϕklW
(l)xk

)
̸= 0,

for |x| ≤ 1. This condition determines the region of ϕkl values for which the process is

weakly stationary.

As explained by Deutsch and Pfeifer (1981), the proper approach to estimation is highly

dependent upon the nature of the variance-covariance matrix of the errors. If G is assumed

to be diagonal, the model estimation should proceed using weighted least squares method.

In particular, when the processes for all the N sites have the same variance (G = σ2IN,

where IN is the N ×N identity matrix), the estimation technique reduces to ordinary least

squares.

Lastly, when G is not diagonal, estimation should be performed using generalized least

squares. The authors develop procedures for testing hypotheses about G and provide

tables of the critical values for the proposed tests.

The covariance between the l and k order neighbors at the time lag s is defined as

space-time covariance function (STCOV). Let E[Z(t)] = 0, the STCOV can be expressed
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as

γlk(s) = E

{
[W(l)z(t)]′[W(k)z(t+ s)]

N

}
(3)

= tr

{
W(k)′W(l)Γ(s)

N

}
,

where tr[A] is the trace of the square matrix A and Γ(s) = E[z(t)z(t+ s)′]. More details,

see for example Pfeifer and Deutsch (1980b) and Subba Rao and Antunes (2003).

2.3.1. Model identification

The identification of the STARMA model is carried out by using the space-time auto-

correlation function (STACF). The STACF between the l and k order neighbors, at the

time lag s, is defined as

ρlk(s) =
γlk(s)

[γll(0)γkk(0)]1/2
.

Given the vector z(t) = [z1(t), . . . , zN (t)]′ of observations at time t = 1, . . . , T , the estimator

of Γ(s) is given by

Γ̂(s) =

T−s∑
l=1

z(t)z(t+ s)′

T − s
, s ≥ 0.

Γ̂(s) can be substituted in Equation 3 in order to obtain the sample estimates γ̂lk of the

STCOV. Therefore, the sample estimator of the STACF is

ρ̂lk(s) =
γ̂lk(s)

[γ̂ll(0)γ̂kk(0)]1/2
. (4)

Pfeifer and Deutsch (1980b) demonstrated that identification can usually proceed

strictly on the basis of ρ̂l0 for l = 1, . . . , λ.

Each particular model of the STARMA family has a unique space-time autocorrelation

function (see Table 2). However, if the model is autoregressive but with unknown order, is

not easy to determine its correct order using ρ̂lk(s). This difficulty can be handled using

the space-time partial autocorrelation function (STPACF), which can be expressed as

ρh0 =
k∑

j=1

λ∑
l=0

ϕjlρhl(s− j), s = 1, . . . , k; h = 0, 1, . . . , λ. (5)

The last coefficient, ϕkλ, obtained from solving the system in Equation 5 for λ = 0, 1, . . .

and k = 1, 2, . . ., is called space-time partial correlation of spatial order λ. The selection

of the spatial order is established by the researcher. As suggested by Pfeifer and Deutsch
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(1980b), the value of λ must be at least the maximum spatial order of any hypothetic

model.

Table 2: Characteristics of the theoretical STACF and STPACF for STAR, STMA and STARMA

models.

Process STACF STPACF

STAR
Tails off with both space

and time

Cuts off after p lags in time

and λp lags in space

STMA
Cuts off after q lags in time

and mq lags in space

Tails off with both space

and time

STARMA Tails off Tails off

2.3.2. Parameter estimation

Assuming that the ε(t), t = 1, . . . , T , are independent with distinct variances for each

of the N sites, that is, the variance-covariance matrix G is a N ×N diagonal matrix, the

maximum likelihood estimates of

Φ = [ϕ10, . . . , ϕ1λ1 , . . . , ϕp0, . . . , ϕpλp ]
′

Θ = [θ10, . . . , θ1λ1 , . . . , θq0, . . . , θqmq ]
′,

the parameter vectors of the STARMA model defined in Equation 1, are obtained by

maximizing the log-likelihood function

l(ε|Φ,Θ,G) = −TN

2
log |2πG| − 1

2

T∑
t=1

ε(t)′G−1ε(t),

= −TN

2
log |2πG| − 1

2
S(Φ,Θ)

where

S(Φ,Θ) =
T∑
t=1

ε(t)′G−1ε(t), (6)

is the weighted sum of squares of the errors and

ε(t) = z(t) +

p∑
k=1

λk∑
l=0

ϕklW
(l)z(t− k)−

q∑
k=1

mk∑
l=0

θklW
(l)ε(t− k).
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Finding the values of the parameters that minimize the log-likelihood function is equiv-

alent to finding the values Φ̂ and Θ̂ that minimize the sum of squares in Equation 6.

Therefore, the problem is reduced to finding the weighted least squares estimates of the

parameters.

Numerical techniques must be used to minimize the sum of squares in Equation 6.

Subba Rao and Antunes (2003) proposed a procedure for initial estimation of the parame-

ters of S(Φ,Θ) as well as an efficient criterion for order determination.

2.3.3. Model Adequacy

If the fitted model represents adequately the data, the residuals should have gaussian

distribution with mean zero and variance-covariance matrix equal to G. There are several

tests to verify these conditions in the residuals. Particularly, Pfeifer and Deutsch (1980a)

and Pfeifer and Deutsch (1981) suggested to calculate the sample space-time autocorrela-

tions of the residuals and to compare them with their theoretical variance. The authors

proved that, if the model is adequate,

var(ρ̂l0(s)) ≈
1

N(T − s)
,

where ≈ means approximately and ρ̂l0(s) is the space-time autocorrelation function of the

fitted model residuals. Since the space-time autocorrelations of the residuals should be

approximately gaussian, they can be standardized for, subsequently, testing their signifi-

cance.

Pfeifer and Deutsch (1980a) pointed out that if the residuals have spatial correlation

they can be represented by a STARMA model. Usually, identifying the model and incorpo-

rating into the candidate model that generated the residuals, is the best form of updating

the model.

According to Subba Rao and Antunes (2003), the estimated parameters can be tested

for statistical significance in two ways: use the confidence regions for the parameters to

test the hypothesis that H0 : Φ = Θ = 0, or test the hypothesis that a particular ϕkl or

θkl is zero with the remaining parameters unrestricted.

Let δ̂ = (Φ̂, Θ̂)′ = (δ1, . . . , δK)′ be the least squares estimate of the full parameter

vector, and let δ̂
∗
= (δ1, . . . , δi, . . . , δK)′ be the least squares estimate of the parameter

vector with δi, i = 1, . . . ,K, constrained to be zero. The test for the hypothesis H0 : δi = 0
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is based on the statistic:

Υ =
(TN −K)[S(δ̂

∗
)− S(δ̂)]

S(δ̂)
.

Under H0, Υ is approximately distributed as an F1,TN−K . Any parameter that is

statistically insignificant must be removed from the model to obtain a simpler model which

must be considered as candidate and the estimation stage must be repeated.

3. Results and discussion

3.1. Data preparation

Outliers detection

Laranjeiras

Year

S
O

2 
µ

m
3

0
20

40

2005 2006 2007 2008 2009

Enseada do Sua

Year

S
O

2 
µ

m
3

0
20

40

2005 2006 2007 2008 2009

Vitória Centro

Year

S
O

2 
µ

m
3

0
20

40

2005 2006 2007 2008 2009

Ibes

Year

S
O

2 
µ

m
3

0
20

40

2005 2006 2007 2008 2009

Vila Velha Centro

Year

S
O

2 
µ

m
3

0
20

40

2005 2006 2007 2008 2009

Cariacica

Year

S
O

2 
µ

m
3

0
5

15

2005 2006 2007 2008 2009

Figure 2: SO2 daily average concentrations at the AAQMN monitoring stations (- · - 2005 WHO

guideline −− 2005 WHO interim guideline).

Figure 2 shows the time series plots of the six monitoring stations considered in this

study. Some sites (like Laranjeiras at the beginning of the year 2009, for example) show

outliers that can affect the modeling and forecasting model performance.

In this context, Fox (1972) suggested four classes of outliers: additive outliers (AO),

level shift (LS), temporal change (TC) and innovational outliers (IO). According to (Peña,
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2001), the effect of AO, TC and LS outliers is limited and independent of the model, AO

and TC have transitory effects while LS have permanent effects. However, the effect of an

IO depends on the kind of model and its statistical characteristic.

We used the methodology proposed by Gomez and Maravall (1998), which is imple-

mented on the software TRAMO (http://www.bde.es/), for outliers detection and correction

of the time series obtained from each monitoring station. Table 3 shows the number of the

observation detected as outlier as well as its type.

There were not any IO outliers and the only LS outlier was detected in Cariacica

corresponding to observation 568 (July 22, 2006). This level shift can be observed in Figure

2, there is a sudden fall of concentrations observed from this date on, maybe because of a

measuring equipment change or any calibration adjusting of the equipment.

Almost all time series observed have outliers with immediate effects, like observation

1536 in Laranjeiras, recorded on March 16th, 2009 (AO outlier); or short-time effects (TC

outliers), like the observation 848 in Enseada do Suá, corresponding to April 28th, 2007,

where there is a temporary fall in the concentrations, but rapidly they back to the mean

levels.

Considering the high quantity of outliers detected by the previous analysis, we decided

to transform all the time series in order to correct the distortions caused by the atypical

values.

Cycles determination

It is well known that air pollution and meteorological data are influenced by cycles and

seasons. In order to determine the cycles affecting SO2 daily average concentrations, we

estimated the periodogram for the time series from each monitoring station. The plots of

the periodograms are not shown due to space constraints, however, the most significant

periods are given in Table 4.

The expected period of 7 days (since the time series are daily measurements) is sig-

nificant only in Vitória Centro and Cariacica stations, both sites also present significant

periods of 3.5 and 32 days. The remaining monitoring stations have significant periods of

approximately 19, 57 and 82 days. These findings indicate that SO2 concentration levels

are affected not only by weekly cycles, but also by monthly and seasonal periods. Following

Antunes and Subba Rao (2006), we removed the cyclical component in each time series.
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Table 3: List of detected outliers at each AAQMN monitoring station.

Outlier type

Station AO LS TC

1536, 1335, 1367, 1755, 1224, 1680, 57, 123, 52,

Laranjeiras 1719, 1378, 1170, 1340, 1290, 1082, 1673, 1409, 1344, 1156

127, 1331, 1402, 1397, 627

Enseada 1029, 897, 882, 889, 343, 178, 848, 970

do Suá 171, 350, 140, 268

1301, 538, 406, 568, 247, 506,

Vitória 302, 365, 188, 1739, 688, 553, 184, 199, 35, 527, 510

Centro 898, 532

Ibes 301, 1800

Vila Velha 447, 629 451, 455, 1725, 1700

Centro

412, 133, 171, 1240, 1246, 203,

Cariacica 92, 68, 1601, 763, 564, 1600, 568

515, 1376, 1235, 97, 196, 636,

812, 817, 415, 952, 140

Denoting by Y(t) the outliers-corrected time series, the transformed series to be used for

STARMA modeling can be written as

Z(t) = Y(t)−X(t),

where X(t) = [X1(t), . . . , X6(t)]
′ is a periodic function that can be represented as a har-

monic series, i.e.

Xi(t) =

s∑
j=1

[
ξi,j cos

(
2πjt

Cj

)
+ ξ†i,j sin

(
2πjt

Cj

)]
, i = 1, . . . , 6, t = 1, . . . , T

where ξi,j and ξ†i,j are unknown parameters which are estimated by least squares, s is

the number of significant cycles and Cj represents the period (or cycle) of the time series.
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Table 4: Significant cycles by monitoring station.

Station Cycle (days)

Laranjeiras None

Enseada do Suá 16.5, 17.5, 18.5, 82

Vitória Centro 32, 7, 3.5, 19

Ibes 18.5, 16.5, 57, 25

Vila Velha Centro 82, 56.5, 18.5, 75

Cariacica 7, 3.5, 32

3.2. Descriptive analysis

As observed on Figure 2, for every year the average concentrations are lower than the

standard level established by the Brazilian law (CONAMA No. 03 of 28/06/90) which are:

average of 365µg/m3 for a 24-hour period (cannot be exceeded more than once a year)

and annual arithmetic average of 80µg/m3. Nevertheless, the concentrations are quite

higher than the guideline suggested by the World Health Organization (World Health

Organization [WHO], 2006), which is 24-hour average concentration of 20µg/m3, or even

the interim guideline of 50µg/m3 average suggested for developing countries like Brazil.

Particularly, Vila Velha Centro station exceed the interim limit only once in 2006.

Cariacica station does not exceed any limit and shows the lowest values and variability.

These assertions can be confirmed from the results displayed in Table 5. Besides, it

can be observed that some stations show a high variability and maximum values much

larger than the most of observed concentrations, for example, while 75% of concentra-

tions from Ibes station is lower than 14.48µg/m3, the maximum concentration observed is

41.385µg/m3 (more than four times the mean value).

Table 5: Summary statistics of daily average SO2 concentrations in GVR (2005-2009).

Station Minimum 1st. Quartil Median Mean 3rd. Quartil Maximum

Laranjeiras 2.630 9.675 12.100 12.478 14.861 36.770

Enseada do Suá 2.159 10.349 14.195 14.942 18.452 47.288

Vitória Centro 2.417 9.651 13.233 14.165 17.915 42.295

Ibes 0.623 5.738 9.694 10.898 14.476 41.385

Vila Velha Centro 1.288 8.914 11.195 12.422 14.918 54.165

Cariacica 0.479 6.316 7.927 7.872 9.797 17.852
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The highest SO2 mean concentrations were observed at Enseada do Suá and Vitória

Centro stations. This situation can be explained by the direct influence of industrial and

port activities for both monitoring stations, as showed in Table 1.

The boxplots shown in Figure 3 show that the mean concentrations and variability are

different for all stations. Higher concentrations are observed in regions influenced by the

main industrial activities of GVR, and lower values are observed in regions far away from

that influence (like Laranjeiras and Cariacica stations). This behavior suggests there is an

influence of the location, which reinforces the importance of including spatial characteristics

into the model.

Figure 4 displays the boxplots of the average concentrations by day of the week. As

observed in Section 3.1, there is a weekly cycle in Vitória Centro and Cariacica monitoring

stations because the median is slightly lower on weekends and the concentration rises along

the week. The remaining stations do not show any obvious trend along the week.
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S6: Cariacica

Figure 3: Boxplots of SO2 daily average by monitoring station.

The sample autocorrelation functions (ACF) of the outliers-corrected SO2 time se-

ries obtained for each monitoring station are shown in Figure 5. The slow decay of the

correlations suggest non-stationarity of the time series in all the stations, however, the

Augmented Dickey-Fuller test, proposed by Dickey and Fuller (1979), was used to exam-

ine the hypothesis of stationarity of SO2 average concentrations at each monitoring station.

Results indicate that there is not enough evidence to consider the series as non-stationary
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Figure 4: Boxplots of SO2 daily average by day of the week.

(p value < 0.02 for all stations).

3.3. Weighting matrix

As indicated by Pfeifer and Deutsch (1980b), the weighting matrixW(l) must be defined

prior to modeling. Since the GVR has a small number of stations irregularly distributed

over a relatively small area, it is reasonable to consider each site as first order neighbor of

every other site. Therefore, the maximum spatial order of the STARMA model is one. So

we have

W(0) = IN and W(1) = W.

There are several ways to define the weighting matrix, see Cliff and Ord (1981) and

Anselin and Smirnov (1996). In particular, we chose W formed by weights inversely

proportional to the Euclidean distance between the monitoring stations since this is the

most widely used and simplest approach.

The distance (Km) between the stations was calculated using the expression:

dij =6378.7× acos(sin(lati/57.296)× sin(latj/57.296) + cos(lati/57.296) cos(latj/57.296)

× cos(lonj/57.296− loni/57.296)),
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Figure 5: Autocorrelation Functions for SO2 daily average by monitoring station.

for i, j = 1, 2, . . . , 6, where lati and loni represent the latitude and longitude of the sta-

tion i, respectively (www.meridianworlddata.com/Distance-Calculation.asp). Therefore,

the weighting matrix W was defined considering weights (wij) as,

wij =


1/dij , for i ̸= j

0, for i = j.

The weights were scaled so that the sum of the elements at each line equals one. The

resulting W matrix is:

W =



0.000 0.252 0.206 0.184 0.211 0.148

0.081 0.000 0.212 0.211 0.409 0.087

0.073 0.232 0.000 0.299 0.235 0.161

0.058 0.208 0.269 0.000 0.348 0.118

0.060 0.359 0.188 0.311 0.000 0.082

0.096 0.176 0.297 0.242 0.188 0.000
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3.4. Fitted model

From Figures 6 and 7 we can observe that there is no remaining seasonality or cycles

in the data. According to the characteristics described on Table 2, the slow decaying of

the STFAC and the cutting-off in the STPACF after the first 6 time lags in the spatial lag

zero indicates that a suitable model is a STAR with maximum autoregressive order 6.

The partial space-time autocorrelations are not significant for the spatial order 1 after

the first time lag, indicating that a spatial order one could be enough. The STACF

and STPACF were calculated based on the assumption that the errors ε have a diagonal

variance-covariance matrix G, estimated from the data.
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Figure 6: Space-time Autocorrelation Function (STACF) for SO2 daily average time series.

The model with the best performance is the STAR(41,0,0,0) with parameters (the stan-

dard errors are shown in brackets):

ϕ10 = −0.475 (0.0109) ϕ11 = −0.066 (0.0306)

ϕ20 = −0.066 (0.0121) ϕ21 = 0.058 (0.0335)

ϕ30 = −0.108 (0.0121) ϕ31 = −0.004 (0.0335)

ϕ40 = −0.156 (0.0109) ϕ41 = −0.019 (0.0306)

The parameters ϕ21, ϕ31 and ϕ41 were not significant at a 5% level of significance.
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Figure 7: Partial Space-time Autocorrelation Function (STPACF) for SO2 daily average time series.

Therefore, the final fitted model is:

ẑ(t) = 0.475z(t− 1) + 0.066Wz(t− 1) + 0.066z(t− 2) (7)

+ 0.108z(t− 3) + 0.156z(t− 4).

The sample STACF of the residuals, displayed in Figure 8, shows very small autocor-

relation values, suggesting that the assumption of uncorrelated errors is satisfied by the

fitted model.

Normality tests and quantile-quantile plots of the residuals (Figure 9) show that the

errors are not normally distributed. The lack of Gaussian distribution affects only the

inferential process, that is, the significance tests as well as the confidence and prediction

intervals.

In order to guarantee the reliability of the model, bootstrap resampling techniques were

used to obtain confidence intervals for the estimated parameters as well as the prediction

intervals. The bootstrap approach here adopted was resampling from the residuals ε(t) of

the fitted model as follows,

a. Calculate the residual for each observation:

ε̂(t) = z(t)− ẑ(t) t = 1, . . . , T.
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Figure 8: Space-time Autocorrelation Function (STACF) of the residuals from the fitted

STARMA(41,0,0,0, 0) model.

b. Select bootstrap samples of the residuals, e⋆b = [ε⋆b(1), . . . , ε
⋆
b(T )]

′, and from these,

calculate bootstrapped z values z⋆b = [z⋆b(1), . . . , z
⋆
b(T )]

′, where z⋆b(t) = ẑ(t)− ε⋆b(t),

for t = 1, . . . , T .

c. Fit the model using z values to obtain the bootstrap coefficients

δ⋆b = (ϕ⋆
10,b, ϕ

⋆
11,b, ϕ

⋆
20,b, ϕ

⋆
21,b, ϕ

⋆
30,b, ϕ

⋆
31,b, ϕ

⋆
40,b, ϕ

⋆
41,b)

′,

for b = 1, . . . , r, where r is the number or bootstrap replicates.

d. The resampled δ⋆b can be used to construct bootstrap standard errors and confidence

intervals for the coefficients.

As is well known, the bootstrap samples have the property of mimic the original sam-

ple. More details about bootstrap techniques can be obtained in Wu (1986), Efron and

Tibshrani (1993) and Lam and Veall (2002) among others.

Figure 10 displays the predicted values of the observed time series by using the fitted

model. This figure suggests a reasonably good performance of the model. It well captures

the variability, tendency and the periods of the data.

The model indicates that SO2 concentrations in a site are highly influenced by the

levels presented in the previous day (ϕ10 = −0.475). Moreover, the permanence of SO2
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Figure 9: Quantile-quantile plot of the residuals from the fitted STARMA(41,0,0,0, 0) model.

in the atmosphere of the region is around 3-4 days and the concentration level in a site is

influenced by the concentration observed at its neighbors in the day before. Based on the

good in-sample performance of the model, it is reasonable to consider it as an alternative

method for estimating missing data.

3.5. Forecasting

The fitted model shown in Equation 7 was used in order to determine one-step-ahead

forecasts for a 15-days period, that is, we obtained forecasts for the last two weeks of the

full period. The forecasts were calculated using the Minimum Mean Square Error (MMSE)

criterion as

ẑ(1)(t) = E[z(t+ 1)|z(s), s ≤ t].

The forecasts and their 95% prediction intervals are displayed in Figure 11. It can be

observed that forecasts describe well the time series behavior and trend for all the stations.

Even knowing that Gaussian distribution assumption is not met, the prediction intervals

under this supposition were calculated only for comparative purposes. It becomes clear

that the errors were underestimated for the most of stations and, therefore, the reliability

of the inferences based on the Gaussian assumption was strongly compromised. This

fact reinforces the usefulness of the resampling techniques in order to perform efficient
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Figure 10: Within-sample prediction for the transformed SO2 time series (· · · Observed concentra-

tions — Predicted concentrations).

inferences.

In particular, for the time series which have the lower variability (Laranjeiras and

Cariacica stations), almost all the real data falls within the prediction intervals and their

forecasts are more accurate than those for the sites which have observations very distant

from the mean, as is the case of Enseada do Suá station, for example. For the remaining

series, it can be observed that even the model capturing the high variability in the data,

the discrepant values are not covered by the prediction intervals.

In order to quantify the forecasting ability of the fitted model for each monitoring

station we used the criterions: root mean squared error (RMSE) and mean absolute error

(MAE), defined as

RMSEi =

√√√√ 1

H

T+H∑
t=T+1

ϵi(t)2,

MAEi =
1

H

T+H∑
t=T+1

|ϵi(t)|,

where i = 1, 2, . . . , 6 and H = 1, . . . , 15. The MAE measures the average magnitude of

errors considering their absolute magnitude. The RMSE is also known as the standard
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Figure 11: Out-of-sample one-step-ahead forecasts for the transformed SO2 time series (··· Observed

data – – Forecasted data · – · 95% confidence limits for Gaussian interval — 95% confidence limits

for bootstrap interval).

error of the forecast and it is more sensitive to outliers than MAE (Hyndman and Koehler,

2006).

As observed in Table 6, Laranjeiras and Cariacica stations have the most accurate

forecasts (MAE of about 1.71 and 0.25, respectively). The highest values for the MAE

criterion were obtained for Ibes, Enseada do Suá and Vitória Centro stations (about 2.64,

2.59 and 2.11, respectively), which means that the average absolute difference between the

forecasts and the observed concentrations was approximately 2 µg/m3.

The most imprecise forecasts were obtained for Enseada do Suá with a residual standard

deviation of 3.04 µg/m3, followed by Ibes station which has a RMSE of 2.91 µg/m3.

4. Final Remarks

This study applies a STARMA model to daily average SO2 concentrations in order to

describe the dynamics of the pollutant at GVR, as well as to forecast future concentrations.

The analysis of the individual time series at the monitoring stations reveals that there are

some significant cycles affecting the behavior of the dispersion over the region.
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Table 6: Model accuracy measures.

Station RMSE MAE

Laranjeiras 2.1409 1.7090

Enseada do Suá 3.0442 2.5917

Vitória Centro 2.5027 2.1073

Ibes 2.9062 2.6408

Vila Velha Centro 2.0422 1.7597

Cariacica 0.2770 0.2503

Based on the fitted model, the persistence of SO2 in the region is about four days

and its concentration levels are influenced by the levels observed at nearby sites. The

residual analysis indicated a good fit for in-sample observations, so that it can be used

for imputation of missing values. Regarding the out-of-sample performance, the model

can be a reasonable tool for predicting future values with a certain reliability. The higher

values of the accuracy measures for the series with more discrepant values indicate that

the forecasting capability of the model is highly influenced by outliers.
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