Author (s): B. L. S. Prakasa Rao

Title of the Report: Characterization of a Multivariate Normal Distribution from Samples of Random Size

Research Report No.: RR2013-13

Date: September 25, 2013

Prof. C R Rao Road, University of Hyderabad Campus, Gachibowli, Hyderabad-500046, INDIA. www.crraoaimscs.org
Characterization of a Multivariate Normal Distribution from Samples of Random Size

B. L. S. PRAKASA RAO
CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, Hyderabad 500046, India

Abstract: We obtain two characterizations of a multivariate normal distribution from samples of random size.

Key words: Characterization; Multivariate normal distribution; Samples of random size.

1 Introduction

Let \(X_i, 1 \leq i \leq N \) and \(Y_j, 1 \leq j \leq N \) be two independent samples of independent identically distributed \(k \)-dimensional random vectors with \(X_i \) distributed as \(F \) and \(Y_j \) distributed as \(G \) where \(N \) is a discrete integer valued random variable independent of \(X_i, 1 \leq i \leq N \) and \(Y_j, 1 \leq j \leq N \). Let

\[
W = \sum_{j=1}^{N} [(a - X_j)'\Sigma^{-1}(a - X_j) + (b - Y_j)'\Sigma^{-1}(b - Y_j)]
\]

where \(\Sigma \) is a known positive definite matrix for vectors \(a \) and \(b \) in \(\mathbb{R}^k \). Suppose that \(E[e^{-\frac{1}{2}W}] = J(a, b) < \infty \). We prove that the function \(J(a, b) \) is a measurable function of the function \(a'\Sigma^{-1}a + b'\Sigma^{-1}b \) if and only if the distributions \(F \) and \(G \) are multivariate normal with mean zero vector and common covariance matrix \(\sigma^2\Sigma \) for some constant \(\sigma^2 > 1 \). This result generalizes a similar result in the univariate case by Kotlarski and Cook (1977). Characterization problems of similar nature for identifiability in stochastic models are discussed in Prakasa Rao (1992).

2 Characterizations

We now state and prove the main results.

Theorem 2.1: Suppose that the function \(J(a, b) = E[e^{-\frac{1}{2}W}] < \infty \) for all vectors \(a \) and \(b \)
in \mathbb{R}^k. Then the function $J(a, b)$ is a measurable function of the function $a'\Sigma^{-1}a + b'\Sigma^{-1}b$ for $a, b \in \mathbb{R}^k$ if and only if the distributions F and G are multivariate normal with mean zero vector and common covariance matrix $\sigma^2\Sigma$ for some positive constant $\sigma^2 > 1$.

Proof: It is clear that

$$E[e^{-\frac{1}{2}W}] = \sum_{n=1}^{\infty} E[e^{-\frac{1}{2}W | N = n}]P(N = n)$$

$$= \sum_{n=1}^{\infty} (E[\exp(-\frac{1}{2}(a - X_j)'\Sigma^{-1}(a - X_j))]E[\exp(-\frac{1}{2}(b - Y_j)'\Sigma^{-1}(b - Y_j))])^n P(N = n).$$

The last inequality follows from the assumption that $X_i, 1 \leq i \leq N$ and $Y_j, 1 \leq j \leq N$ are two independent samples of independent identically distributed k-dimensional random vectors independent of the random variable N. Let

$$\alpha(a) = E[\exp(-\frac{1}{2}(a - X_j)'\Sigma^{-1}(a - X_j))]$$

and

$$\beta(b) = E[\exp(-\frac{1}{2}(b - Y_j)'\Sigma^{-1}(b - Y_j))].$$

Then, it follows that,

$$E[e^{-\frac{1}{2}W}] = Q(\alpha(a)\beta(b))$$

where

$$Q(x) = \sum_{n=1}^{\infty} x^n P(N = n)0 \leq x \leq 1.$$

Note that the function $Q(.)$ is a strictly increasing continuous function on the interval $[0, 1]$. Hence its inverse is well defined. Suppose that the function $E[e^{-\frac{1}{2}W}]$ is a measurable function of the function $a'\Sigma^{-1}a + b'\Sigma^{-1}b$. Then there exists a measurable real-valued function $\psi(.)$ such that

$$\psi(a'\Sigma^{-1}a + b'\Sigma^{-1}b) = Q(\alpha(a)\beta(b))$$

or equivalently

$$\alpha(a)\beta(b) = \gamma(a'\Sigma^{-1}a + b'\Sigma^{-1}b)$$

where $\gamma = Q^{-1}\alpha\psi$ for all $a, b \in \mathbb{R}^k$. It is easy to see that $\alpha(0) \neq 0$ and $\beta(0) \neq 0$ for $a = 0$ and $b = 0$. Substituting $a = 0$ and $b = 0$ alternately, we obtain that

$$\gamma(a'\Sigma^{-1}a)\gamma(b'\Sigma^{-1}b) = \alpha(0)\beta(0)\gamma(a'\Sigma^{-1}a + b'\Sigma^{-1}b)$$

2
for all \(a, b \in \mathbb{R}^k\). Let

\[
\theta(t) = \frac{\gamma(t)}{\alpha(0)\beta(0)}, t \geq 0.
\]

Note that the function \(\theta(.)\) is measurable and the equation (2.3) implies that

\[
\theta(a'\Sigma^{-1}a)\theta(b'\Sigma^{-1}b) = \theta(a'\Sigma^{-1}a + b'\Sigma^{-1}b)
\]

for all \(a, b \in \mathbb{R}^k\). Hence the function \(\theta(.)\) is a measurable function such that

\[
\theta(t)\theta(s) = \theta(t+s)
\]

for all \(t, s \geq 0\) since \(\Sigma^{-1}\) is a positive definite matrix. Therefore

\[
\theta(t) = e^{ct}, t \geq 0
\]

for some constant \(c\). Hence

\[
\gamma(t) = e^{ct}\alpha(0)\beta(0), t \geq 0.
\]

Therefore, for any \(a \in \mathbb{R}^k\),

\[
\gamma(a'\Sigma^{-1}a) = e^{a'\Sigma^{-1}a}\alpha(0)\beta(0), a \in \mathbb{R}^k.
\]

Note that

\[
\gamma(a'\Sigma^{-1}a) = \alpha(a)\beta(0), a \in \mathbb{R}^k
\]

from (2.2). Combining the equations (2.8) and (2.9) and noting that \(\beta(0) \neq 0\), it follows that

\[
e^{a'\Sigma^{-1}a}\alpha(0) = \alpha(a) = \int_{\mathbb{R}^k} \exp[-\frac{1}{2}(a-x)'\Sigma^{-1}(a-x)]F(dx).
\]

This in turn gives the relation

\[
\frac{\alpha(0)}{(2\pi)^k/2|\Sigma|^{1/2}}e^{a'\Sigma^{-1}a} = \int_{\mathbb{R}^k} \frac{1}{(2\pi)^k/2|\Sigma|^{1/2}} \exp[-\frac{1}{2}(a-x)'\Sigma^{-1}(a-x)]F(dx)
\]

for all \(a \in \mathbb{R}^k\). The expression on the right side of the equation (2.11) is the convolution of a multivariate normal density function with the distribution \(F\). Hence the expression on the left side of the equation (2.11) also has to be a probability density function which implies that the constant \(c = -\frac{1}{2\sigma^2}\) for some \(\sigma^2 > 0\) and \(\alpha(0)\) is a suitable normalizing constant.

The characteristic functions of the probability densities on both sides of the equation (2.11), then, should satisfy the relation

\[
\exp[-\frac{1}{2}(t'\Sigma t)\sigma^2] = \exp[-\frac{1}{2}t'\Sigma t] \phi_X(t), t \in \mathbb{R}^k
\]
where ϕ_X is the characteristic function of the random vector X. Hence

$$\phi_X(t) = \exp[-\frac{1}{2}(t'(\sigma^2\Sigma - \Sigma)t)s^2], \, t \in \mathbb{R}^k.$$ \hspace{1cm} (2. 13)

Since ϕ_X is the characteristic function of the random vector X, it follows that $\sigma^2 > 1$ and the random vector X has the multivariate normal distribution with the mean vector zero and the covariance matrix $(\sigma^2 - 1)\Sigma$. Similar arguments prove that the random vector Y is also multivariate normal with mean vector zero and the covariance matrix $(\sigma^2 - 1)\Sigma$.

The converse part of the result stated in the theorem can be easily verified.

Suppose f and g are probability density functions on \mathbb{R}^k. Let

$$Z = \Pi_{j=1}^N f(a - X_j)g(b - Y_j), \, a, b \in \mathbb{R}^k.$$

Theorem 2.2: Suppose that the function $H(a, b) = E[Z] < \infty, a, b \in \mathbb{R}^k$. Then the function $H(a, b)$ is a measurable function of the function $\alpha(a)$ and $\beta(b)$ if and only if the distributions F and G are multivariate normal with mean vectors μ_F and μ_G and covariance matrices Σ_F and Σ_G respectively and the probability density functions f and g are multivariate normal probability density functions with mean vectors μ_f and μ_g and the covariance matrices Σ_f and Σ_g respectively with

$$\mu_f + \mu_g = 0$$

and

$$\Sigma_f + \Sigma_g = \Sigma_f + \Sigma_g = \sigma^2 \Sigma$$

for some $\sigma^2 > 0$.

Proof: Let $\alpha(a) = E[f(a - X)]$ and $\beta(b) = E[g(b - Y)], a, b \in \mathbb{R}^k$. It is easy to check that

$$E[Z] = \sum_{n=1}^{\infty} E[f(a - X)]E[g(b - Y)])n P(N = n)$$

$$= Q(\alpha(a)\beta(b)) \quad \text{(say)}.$$ \hspace{1cm} (2. 14)

Suppose that $E(Z) = \psi(a'\Sigma^{-1}a + b'\Sigma^{-1}b)$ for some function $\psi(.)$ Then

$$Q(\alpha(a)\beta(b)) = \psi(a'\Sigma^{-1}a + b'\Sigma^{-1}b), \, a, b \in \mathbb{R}^k.$$
This relation is similar to that in equation (2.1). Arguments similar to those given earlier show that there exists a constant c such that

\begin{equation}
\alpha(0) \exp[c \ a' \Sigma^{-1} \ a] = \int_{\mathbb{R}^k} f(a - x) \ F(dx), \ a, b \in \mathbb{R}^k. \tag{2.15}
\end{equation}

Note that the expression on the right side of the equation (2.15) is the convolution of the probability density function f with the distribution function F. Hence the function on the left side of the equation (2.15) has to be a probability density function which implies that $c = -\frac{1}{2\sigma^2}$ for some $\sigma^2 > 0$ and $\alpha(0)$ is a suitable normalizing constant for the multivariate normal density function with mean vector zero and the covariance matrix $\sigma^2 \Sigma$. An application of the Cramer’s theorem in R^k proves that f and F are multivariate normal probability density function and distribution function respectively with

$$\mu_f + \mu_F = 0$$

and

$$\Sigma_f + \Sigma_F = \sigma^2 \Sigma.$$

Similar arguments show that g and G are also multivariate normal probability density function and distribution function respectively with

$$\mu_g + \mu_G = 0$$

and

$$\Sigma_f + \Sigma_G = \sigma^2 \Sigma.$$

The converse part of the result in Theorem 2.2 can be established easily. We omit the details.

Acknowledgement: This work was supported under the scheme ”Ramanujan Chair Professor” by grants from the Ministry of Statistics and Programme Implementation, Government of India (M 12012/15(170)/2008-SSD dated 8/9/09), the Government of Andhra Pradesh, India (6292/Plg.XVIII dated 17/1/08) and the Department of Science and Technology, Government of India (SR/S4/MS:516/07 dated 21/4/08) at the CR Rao Advanced Institute for Mathematics, Statistics and Computer Science, Hyderabad, India.
References
