

Characterization of a Multivariate Normal Distribution from Samples of Random Size

B. L. S. PRAKASA RAO

CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, Hyderabad 500046, India

Abstract: We obtain two characterizations of a multivariate normal distribution from samples of random size.

Key words : Characterization; Multivariate normal distribution; Samples of random size.

1 Introduction

Let $\mathbf{X}_i, 1 \leq i \leq N$ and $\mathbf{Y}_j, 1 \leq j \leq N$ be two independent samples of independent identically distributed k-dimensional random vectors with X_i distributed as F and Y_j distributed as G where N is a discrete integer valued random variable independent of $\mathbf{X}_i, 1 \leq i \leq N$ and $\mathbf{Y}_j, 1 \leq j \leq N$. Let

$$W = \sum_{j=1}^{N} [(\mathbf{a} - \mathbf{X}_j)' \Sigma^{-1} (\mathbf{a} - \mathbf{X}_j) + (\mathbf{b} - \mathbf{Y}_j)' \Sigma^{-1} (\mathbf{b} - \mathbf{Y}_j)]$$

where Σ is a known positive definite matrix for vectors **a** and **b** in \mathbb{R}^k . Suppose that $E[e^{-\frac{1}{2}W}] = J(\mathbf{a}, \mathbf{b}) < \infty$. We prove that the function $J(\mathbf{a}, \mathbf{b})$) is a measurable function of the function $\mathbf{a}'\Sigma^{-1}\mathbf{a} + \mathbf{b}'\Sigma^{-1}\mathbf{b}$ if and only if the distributions F and G are multivariate normal with mean zero vector and common covariance matrix $\sigma^2\Sigma$ for some constant $\sigma^2 > 1$. This result generalizes a similar result in the univariate case by Kotlarski and Cook (1977). Characterization problems of similar nature for identifiability in stochastic models are discussed in Prakasa Rao (1992).

2 Characterizations

We now state and prove the main results.

Theorem 2.1: Suppose that the function $J(\mathbf{a}, \mathbf{b}) = E[e^{-\frac{1}{2}W}] < \infty$ for all vectors \mathbf{a} and \mathbf{b}

in \mathbb{R}^k . Then the function $J(\mathbf{a}, \mathbf{b})$ is a measurable function of the function $\mathbf{a}' \Sigma^{-1} \mathbf{a} + \mathbf{b}' \Sigma^{-1} \mathbf{b}$ for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^k$ if and only if the distributions F and G are multivariate normal with mean zero vector and common covariance matrix $\sigma^2 \Sigma$ for some positive constant $\sigma^2 > 1$.

Proof: It is clear that

$$E[e^{-\frac{1}{2}W}] = \sum_{n=1}^{\infty} E[e^{-\frac{1}{2}W}|N=n]P(N=n)$$

=
$$\sum_{n=1}^{\infty} (E[\exp(-\frac{1}{2}(\mathbf{a} - \mathbf{X}_j)'\Sigma^{-1}(\mathbf{a} - \mathbf{X}_j))]E[\exp(-\frac{1}{2}(\mathbf{b} - \mathbf{Y}_j)'\Sigma^{-1}(\mathbf{b} - \mathbf{Y}_j))])^n P(N=n).$$

The last inequality follows from the assumption that $\mathbf{X}_i, 1 \leq i \leq N$ and $\mathbf{Y}_j, 1 \leq j \leq N$ are two independent samples of independent identically distributed k-dimensional random vectors independent of the random variable N. Let

$$\alpha(\mathbf{a}) = E[\exp(-\frac{1}{2}(\mathbf{a} - \mathbf{X}_j)'\Sigma^{-1}(\mathbf{a} - \mathbf{X}_j))]$$

and

$$\beta(\mathbf{b}) = E[\exp(-\frac{1}{2}(\mathbf{b} - \mathbf{Y}_j)'\Sigma^{-1}(\mathbf{b} - \mathbf{Y}_j))].$$

Then, it follows that,

$$E[e^{-\frac{1}{2}W}] = Q(\alpha(\mathbf{a})\beta(\mathbf{b}))$$

where

$$Q(x) = \sum_{n=1}^{\infty} x^n P(N=n) 0 \le x \le 1.$$

Note that the function Q(.) is a strictly increasing continuous function on the interval [0, 1]. Hence its inverse is well defined. Suppose that the function $E[e^{-\frac{1}{2}W}]$ is a measurable function of the function $\mathbf{a}'\Sigma^{-1}\mathbf{a} + \mathbf{b}'\Sigma^{-1}\mathbf{b}$. Then there exists a measurable real-valued function $\psi(.)$ such that

(2. 1)
$$\psi(\mathbf{a}'\Sigma^{-1}\mathbf{a} + \mathbf{b}'\Sigma^{-1}\mathbf{b}) = Q(\alpha(\mathbf{a})\beta(\mathbf{b}))$$

or equivalently

(2. 2)
$$\alpha(\mathbf{a})\beta(\mathbf{b}) = \gamma(\mathbf{a}'\Sigma^{-1}\mathbf{a} + \mathbf{b}'\Sigma^{-1}\mathbf{b})$$

where $\gamma = Q^{-1} o \psi$ for all $\mathbf{a}, \mathbf{b} \in \mathbb{R}^k$. It is easy to see that $\alpha(\mathbf{0}) \neq 0$ and $\beta(\mathbf{0}) \neq 0$ for $\mathbf{a} = \mathbf{0}$ and $\mathbf{b} = \mathbf{0}$. Substituting $\mathbf{a} = \mathbf{0}$ and $\mathbf{b} = \mathbf{0}$ alternately, we obtain that

(2. 3)
$$\gamma(\mathbf{a}'\Sigma^{-1}\mathbf{a})\gamma(\mathbf{b}'\Sigma^{-1}\mathbf{b}) = \alpha(\mathbf{0})\beta(\mathbf{0})\gamma(\mathbf{a}'\Sigma^{-1}\mathbf{a} + \mathbf{b}'\Sigma^{-1}\mathbf{b})$$

for all $\mathbf{a}, \mathbf{b} \in \mathbb{R}^k$. Let

$$\theta(t) = \frac{\gamma(t)}{\alpha(\mathbf{0})\beta(\mathbf{0})}, t \ge 0.$$

Note that the function $\theta(.)$ is measurable and the equation (2.3) implies that

(2. 4)
$$\theta(\mathbf{a}'\Sigma^{-1}\mathbf{a})\theta(\mathbf{b}'\Sigma^{-1}\mathbf{b}) = \theta(\mathbf{a}'\Sigma^{-1}\mathbf{a} + \mathbf{b}'\Sigma^{-1}\mathbf{b})$$

for all $\mathbf{a}, \mathbf{b} \in \mathbb{R}^k$. Hence the function $\theta(.)$ is a measurable function such that

(2.5)
$$\theta(t)\theta(s) = \theta(t+s)$$

for all $t, s \ge 0$ since Σ^{-1} is a positive definite matrix. Therefore

$$\theta(t) = e^{c t}, t \ge 0$$

for some constant c. Hence

(2. 7)
$$\gamma(t) = e^{c t} \alpha(\mathbf{0}) \beta(\mathbf{0}), t \ge 0.$$

Therefore, for any $\mathbf{a} \in \mathbb{R}^k$,

(2. 8)
$$\gamma(\mathbf{a}'\Sigma^{-1}\mathbf{a}) = e^{c\,\mathbf{a}'\Sigma^{-1}\mathbf{a}}\alpha(\mathbf{0})\beta(\mathbf{0}), \mathbf{a} \in \mathbb{R}^k.$$

Note that

(2. 9)
$$\gamma(\mathbf{a}'\Sigma^{-1}\mathbf{a}) = \alpha(\mathbf{a})\beta(\mathbf{0}), \mathbf{a} \in \mathbb{R}^k$$

from (2.2). Combining the equations (2.8) and (2.9) and noting that $\beta(\mathbf{0}) \neq 0$, it follows that

(2. 10)
$$e^{c \mathbf{a}' \Sigma^{-1} \mathbf{a}} \alpha(\mathbf{0}) = \alpha(\mathbf{a})$$
$$= \int_{R^k} \exp[-\frac{1}{2} (\mathbf{a} - \mathbf{x})' \Sigma^{-1} (\mathbf{a} - \mathbf{x})] F(d\mathbf{x}).$$

This in turn gives the relation

(2. 11)
$$\frac{\alpha(\mathbf{0})}{(2\pi)^{k/2}|\Sigma|^{1/2}}e^{c\,\mathbf{a}'\Sigma^{-1}\mathbf{a}} = \int_{R^k} \frac{1}{(2\pi)^{k/2}|\Sigma|^{1/2}}\exp[-\frac{1}{2}(\mathbf{a}-\mathbf{x})'\Sigma^{-1}(\mathbf{a}-\mathbf{x})]F(d\mathbf{x})$$

for all $\mathbf{a} \in \mathbb{R}^k$. The expression on the right side of the equation (2.11) is the convolution of a mutivariate normal density function with the distribution F. Hence the expression on the left side of the equation (2.11) also has to be a probability density function which implies that the constant $c = -\frac{1}{2\sigma^2}$ for some $\sigma^2 > 0$ and $\alpha(\mathbf{0})$ is a suitable normalizing constant. The characteristic functions of the probability densities on both sides of the equation (2.11), then, should satisfy the relation

(2. 12)
$$\exp[-\frac{1}{2}(\mathbf{t}'\Sigma\mathbf{t})\sigma^2] = \exp[-\frac{1}{2}\mathbf{t}'\Sigma\mathbf{t}] \ \phi_X(\mathbf{t}), \mathbf{t} \in \mathbb{R}^k$$

where $\phi_{\mathbf{X}}$ is the characteristic function of the random vector \mathbf{X} . Hence

(2. 13)
$$\phi_{\mathbf{X}}(\mathbf{t}) = \exp[-\frac{1}{2}(\mathbf{t}'(\sigma^2\Sigma - \Sigma)\mathbf{t})\sigma^2], \mathbf{t} \in \mathbb{R}^k.$$

Since $\phi_{\mathbf{X}}$ is the characteristic function of the random vector \mathbf{X} , it follows that $\sigma^2 > 1$ and the random vector \mathbf{X} has the multivariate normal distribution with the mean vector zero and the covariance matrix $(\sigma^2 - 1)\Sigma$. Similar arguments prove that the random vector \mathbf{Y} is also multivariate normal with mean vector zero and the covariance matrix $(\sigma^2 - 1)\Sigma$.

The converse part of the result stated in the theorem can be easily verified.

Suppose f and g are probability density functions on \mathbb{R}^k . Let

$$Z = \prod_{j=1}^{N} f(\mathbf{a} - \mathbf{X}_j) g(\mathbf{b} - \mathbf{Y}_j), \mathbf{a}, \mathbf{b} \in \mathbb{R}^k$$

Theorem 2.2: Suppose that the function $H(\mathbf{a}, \mathbf{b}) = E[Z] < \infty, \mathbf{a}, \mathbf{b} \in \mathbb{R}^k$. Then the function $H(\mathbf{a}, \mathbf{b})$ is a measurable function of the function $\mathbf{a}'\Sigma^{-1}\mathbf{a} + \mathbf{b}'\Sigma^{-1}\mathbf{b}$ if and only if the distributions F and G are multivariate normal with mean vectors μ_F and μ_G and covariance matrices Σ_F and Σ_G respectively and the probability density functions f and g are multivariate normal probability density functions with mean vectors μ_f and μ_g and the covariance matrices Σ_f and Σ_g respectively with

$$\mu_F + \mu_f = \mu_G + \mu_g = \mathbf{0}$$

and

$$\Sigma_F + \Sigma_f = \Sigma_G + \Sigma_g = \sigma^2 \Sigma$$

for some $\sigma^2 > 0$.

Proof: Let $\alpha(\mathbf{a}) = E[f(\mathbf{a} - \mathbf{X})]$ and $\beta(\mathbf{b}) = E[g(\mathbf{b} - \mathbf{Y})], \mathbf{a}, \mathbf{b} \in \mathbb{R}^k$. It is easy to check that

(2. 14)
$$E[Z] = \sum_{n=1}^{\infty} [E(f(\mathbf{a} - \mathbf{X}))E(g(\mathbf{b} - \mathbf{Y}))]^n P(N = n)$$
$$= Q(\alpha(\mathbf{a})\beta(\mathbf{b})) \quad (\text{say}).$$

Suppose that $E(Z) = \psi(\mathbf{a}' \Sigma^{-1} \mathbf{a} + \mathbf{b}' \Sigma^{-1} \mathbf{b})$ for some function $\psi(.)$ Then

$$Q(\alpha(\mathbf{a})\beta(\mathbf{b})) = \psi(\mathbf{a}'\Sigma^{-1}\mathbf{a} + \mathbf{b}'\Sigma^{-1}\mathbf{b}), \mathbf{a}, \mathbf{b} \in \mathbb{R}^k.$$

This relation is similar to that in equation (2.1). Arguments similar to those given earlier show that there exists a constant c such that

(2. 15)
$$\alpha(\mathbf{0}) \exp[c \, \mathbf{a}' \Sigma^{-1} \mathbf{a}] = \int_{R^k} f(\mathbf{a} - \mathbf{x}) \ F(d\mathbf{x}), \mathbf{a}, \mathbf{b} \in R^k.$$

Note that the expression on the right side of the equation (2.15) is the convolution of the probability density function f with the distribution function F. Hence the function on the left side of the equation (2.15) has to be a probability density function which implies that $c = -\frac{1}{2\sigma^2}$ for some $\sigma^2 > 0$ and $\alpha(\mathbf{0})$ is a suitable normalizing constant for the multivariate normal density function with mean vector zero and the covariance matrix $\sigma^2 \Sigma$. An application of the Cramer's theorem in \mathbb{R}^k proves that f and F are multivariate normal probability density function and distribution function respectively with

$$\mu_f + \mu_F = \mathbf{0}$$

and

$$\Sigma_f + \Sigma_F = \sigma^2 \Sigma.$$

Similar arguments show that g and G are also multivariate normal probability density function and distribution function respectively with

$$\mu_g + \mu_G = \mathbf{0}$$

and

$$\Sigma_f + \Sigma_G = \sigma^2 \Sigma.$$

The converse part of the result in Theorem 2.2 can be established easily. We omit the details.

Acknowledgement : This work was supported under the scheme "Ramanujan Chair Professor" by grants from the Ministry of Statistics and Programme Implementation, Government of India (M 12012/15(170)/2008-SSD dated 8/9/09), the Government of Andhra Pradesh, India (6292/Plg.XVIII dated 17/1/08) and the Department of Science and Technology, Government of India (SR/S4/MS:516/07 dated 21/4/08) at the CR Rao Advanced Institute for Mathematics, Statistics and Computer Science, Hyderabad, India.

References

- Kotlarski, I.I. and Cook, W.L. (1977) Characterization of normality from samples of random size, Sankhya Series B, 39, 196-200.
- (2) Prakasa Rao, B.L.S. (1992) Identifiability in Stochastic Models: Characterization of Probability Distributions, Academic Press, Boston.