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Abstract8

This study explores the class of Space-Time Autoregressive Moving Average (STARMA) models9

in order to describe and identify the behavior of SO2 daily average concentrations observed in10

the Greater Vitória Region (GVR), Brazil. These models are particularly useful in modeling11

atmospheric pollution data owing to the complex pollutant dispersion dynamics at temporal and12

spatial scales.13

The data were obtained at the air quality monitoring network of GVR, recorded from January14

2005 to December 2009. Our findings indicate that SO2 daily averages tended to be higher than15

the guidelines suggested by the World Health Organization (daily average of 20 µg/m3), for almost16

all the analyzed sites. The time series obtained for each monitoring station show high variability,17

mostly caused by some atypical values observed during the period. The main fluctuations in the18

data are caused by cyclical components, which change from one to another station. On the whole,19

the cycles are not only weekly (as expected, due to the daily measurements) but also monthly and20

seasonal.21

Resampling bootstrap techniques were used in order to handle the lack of the distributional22

assumptions made for fitting the model. The obtained bootstrap prediction intervals showed to23

have larger percentage of observation covered than the intervals obtained under the Gaussian24

distribution assumption.25

The fitted STARMA model indicated that the permanence time of SO2 in GVR atmosphere is26

around 3-4 days. During the period observed, the pollutants released in a site disperse over a large27

expanse of the region, influencing SO2 concentrations observed in the vicinity. The quality of the28

adjusted model suggests that the model is able to predict in-sample values, as well as to forecast29

average concentrations for one day in advance with good reliability.30

Keywords: air pollution, bootstrap, forecasting, space-time models, STARMA, sulfur31

dioxide.32
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1. Introduction33

The GVR is located on the Brazilian South Atlantic coast in the state of Esṕırito Santo34

(ES) and comprises of seven main cities, including the capital Vitória. Its population has35

grown significantly in the last decades as a consequence of rapid industrialization. The36

increase of the industrial activities, as well as the constat grown of traffic (almost 50%37

increases from 2001 to 2011), has caused a large impact on the atmospheric quality in the38

area.39

Particularly, sulfur dioxide (SO2) is considered to be the major indicator of the industrial40

activities in the area, where the mining and iron, as well as the steel industries, contribute41

with almost 76% of SO2 released to the atmosphere (Instituto Estadual de Meio Ambiente42

e Recursos Hı́dricos [IEMA], 2011). An overall view of the air quality parameters in GVR43

shows that SO2 levels do not exceed the standard levels established by the Brazilian law44

and there have not been any reported air pollution alerts due to this pollutant. However,45

according to the Instituto Brasileiro de Geografia e Estat́ıstica [IBGE] (2012), in 2010,46

Vitória was the city with the highest annual SO2 average in Brazil.47

Sulfur dioxide is the main precursor of acid rain and sulfuric acid smog pollution. At48

the same time, it can be oxidized in the atmosphere to form sulfate aerosol, which is an49

important component of fine particles suspended in the urban atmosphere. Its reaction with50

other major atmospheric pollutants such as nitrogen oxide can also affect the atmospheric51

concentrations of these pollutants. Therefore, SO2 is a significant contributor to the quality52

of the environment (Yang et al., 2009).53

In view of this pollution problem, it is important to develop statistical models for diagno-54

sis and short-term prediction in order to provide accurate early warnings for the air quality55

control. As pointed out by McCollister and Wilson (1975), there is also the possibility that56

foreknowledge of high pollution potential could be used to reduce future atmospheric pol-57

lutant concentrations through timely reduction of emissions by traffic control or industrial58

2
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shut-down.59

Several statistical modeling approaches have been proposed to describe trends and fore-60

casting SO2 levels (Brunelli et al. (2007, 2008), Castro et al. (2003), Chelani et al. (2002),61

Lalas et al. (1982), Nunnari et al. (2004), Perez (2001), Roca Pardiñas et al. (2004), Tecer62

(2007), among others). The most of forecasting statistical models for SO2 is based on uni-63

variate time series approaches. For example, Cheng and Lam (2000), Hassanzadeh et al.64

(2009), Kumar and Goyal (2011), Lalas et al. (1982), McCollister and Wilson (1975), Schlink65

et al. (1997). As explained by Turalioglu and Bayraktar (2005), such models are incapable66

of providing regional information on the spatial variations of air pollutants.67

Some other researches have modeled the spatial scale and used data reduction methods68

like principal component analysis to summarize the regional variation of SO2 (Ashbaugh69

et al. (1984), Beelen et al. (2009), Ibarra Berástegui et al. (2009), de Kluizenaar et al. (2001),70

Kurt and Oktay (2010), Zou et al. (2009)). However, many of these spatial approaches do71

not account for the serial autocorrelation latent in data measured over time.72

Considering that the data used in the majority of the air pollution studies are obtained73

from air quality monitoring networks, where the concentrations are observed over various74

spatial locations along time, it is reasonable to model time and space scales simultaneously75

aiming to capture explicitly the inherent uncertainty of the air pollution type data. Particu-76

larly, for SO2 studies see Fan et al. (2010), Rouhani et al. (1992), Turalioglu and Bayraktar77

(2005), Yu and Chang (2006) and Zeri et al. (2011) among others.78

In this context, the class of the space-time models is quite effective, allowing the practi-79

cian to obtain accurate forecasts of the pollution events and to interpolate the spatial regions80

of interest. One of the most useful approaches of this kind of models, yet less explored in81

air pollution studies, is the class of STARMA models. This approach is an extension of the82

classic univariate ARMA time series models into the spatial domain, where the observations83

at each location at a fixed time are modeled as a weighted combination of past observations84

3
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at different locations.85

Our aim here is to explore the class of STARMA models as an alternative methodology86

to describe the dynamics of sulfur dioxide dispersion and to obtain short-term forecasts87

of SO2 daily average in GVR, which can be used to direct new standards for air quality88

management policies and emission control at specific locations.89

This paper is outlined as follows: Section 2 presents the main characteristics of the90

region under the study as well as the description of the analyzed data. The three-stage91

procedure for STARMA modeling is also introduced in this section. Section 3 describes the92

data processing and the results obtained for the fitted STARMA model. Section 4 closes93

with a brief summary of the results obtained from the application of the model.94

2. Data and methodology95

2.1. Study area96

The GVR is located in the Brazilian South Atlantic coast (latitude 20◦19S, longitude97

40◦20W). The climate is tropical humid with average temperatures ranging from 23◦C to98

30◦C. The rainfall occurs mainly from October to January, with annual precipitation volume99

higher to 1400 mm.100

Its topography varies from plains to mountain range interspersed with small and medium101

size rocky massif, which favors the flowing of the humid winds from the sea (Instituto Jones102

dos Santos Neves [IJSN], 2012). Therefore, the dispersion of the pollutants is also favored103

over a large area of the region. Its main atmospherical flowing systems are the South Atlantic104

subtropical anticyclone, which causes the predominant eastern and northeastern winds, and105

the moving polar anticyclone, responsible for the cold fronts from the southern region of the106

continent, characterized by low temperatures, mist and strong winds (Instituto Estadual de107

Meio Ambiente e Recursos Hı́dricos [IEMA], 2007).108

The region is constituted by seven main cities: Vitória (capital city of ES), Serra, Vila109

4
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Velha, Cariacica, Viana, Guarapari and Fundão. These cities take almost half of total110

population of Esṕırito Santo State (48%) and 57% of the urban population in the State111

(Instituto Brasileiro de Geografia e Estat́ıstica [IBGE], 2012). According to the IJSN, the112

region occupies only 5% of ES territory, however its population density is nine times higher113

to the overall mean of State. Besides, it produces 58% of the wealth and consumes 55% of114

the total electric power produced in the State.115

The GVR has two of the major seaports in Brazil: Vitória Port (located in downtown)116

and Tubarão Port (located at the North region of Vitória). The main industrial activities of117

GVR are related to iron and steel industry, stone quarry, cement and food industries, among118

others. These activities represent nearly 55% to 65% of the total potentially pollutant fonts119

in the State (IEMA, 2011).120

Figure 1: Map of the AAQMN monitoring stations in Greater Vitória Region.

In view of the increasing deterioration of the air quality, the IEMA installed the Auto-121

matic Air Quality Monitoring Network (AAQMN) of GVR in 2000. Currently, the network122

is composed of nine monitoring stations (the last one started operations in September 2012),123

all of them located in strategic urban areas (see Figure 1). The network measures continu-124

5
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ously some meteorological variables as well as the concentration of the pollutants: particular125

matter, fine particles < 10µm (PM10), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen126

oxides (NOx), ozone (O3) and hydrocarbons (HC).127

2.2. Data128

We analyzed daily average SO2 concentration (µg/m3) data from January 1, 2005 to129

December 31, 2009, obtained from seven AAQMN monitoring stations. The main sources130

of pollutants of each monitoring station are summarized in Table 1. Aiming to ensure the131

reliability of our study, the monitoring stations having more than 30% missing values for132

the full analyzed period were discarded. Except for Jardim Camburi station (36% missing133

values), all the stations met the criterion for inclusion in the study.134

Table 1:Description of the AAQMN monitoring stations in GVR.

Monitoring
station

Main pollution
sources

Longitude Latitude

Laranjeiras Industrial and traffic 40◦15’24.74”W 20◦11’26.88”S
Jardim Camburi Industrial and traffic 40◦16’06.49”W 20◦15’15.03”S

Enseada do Suá
Port of Tubarão and
traffic

40◦17’26.92”W 20◦18’43.29”S

Vitória Centro
Traffic, seaports, In-
dustrial

40◦20’13.87”W 20◦19’09.42”S

Ibes Traffic and industrial 40◦19’04.38”W 20◦20’53.47”S
Vila Velha Cen-
tro

Traffic and industrial 40◦17’37.77”W 20◦20’04.81”S

Cariacica Traffic and industrial 40◦24’01.59”W 20◦20’29.92”S

Font: IEMA

The missing values were filled using the Gibbs sampling for multiple imputations of the incom-135

plete multivariate data suggested by Aerts et al. (2002). This algorithm imputes an incomplete136

column (in our case, each column corresponds to a monitoring station) by generating plausible137

synthetic values given the other columns in the data. Each incomplete column must act as a target138

column, and has its own specific set of predictors. The default set of predictors for a given target139

6
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consists of all other columns in the data set. All these computations were made using the language140

and environment for statistical computing R 2.15.2 (R Core Team, 2012).141

Once the database was filled, we calculated the 24-hour average concentrations. Therefore,142

the analyzed database contains 1826 observations for the six monitoring stations (sites) considered143

here. The first 1811 observations were used for modeling purposes and the last 15, corresponding144

to the last two weeks of the full period, were used for forecasting purposes.145

2.3. The STARMA Model146

Spatial time series can be viewed as time series collected simultaneously in a number of fixed147

sites with fixed distances between them. As pointed out by Subba Rao and Antunes (2003),148

the space-time models are used to explain the dependence along time in situations that present149

systematic dependence between observations in several sites.150

The class of STARMA models was developed by Pfeifer and Deutsch (1980b). The processes151

which can be represented by STARMA models are characterized by a single random variable Zi(t),152

observed at N fixed spatial locations (i = 1, 2, . . . , N) on T time periods (t = 1, 2, . . . , T ). The N153

spatial locations can represent several situations, like states of a country or regions with monitoring154

stations inside a city, for example.155

The dependence between the N time series is incorporated into the model through hierarchical156

weighting N × N matrices, specified before the data analysis. These matrices must include the157

relevant physical characteristics of the system into the model, as for example, the distance between158

the center of several cities or the distance between monitoring stations from a monitoring network159

(Kamarianakis and Prastacos, 2005).160

As in the case of univariate time series, observations zi(t) from the process {Zi(t)}, are expressed161

in terms of a linear combination of previous observations and errors at the site i = 1, 2, . . . , N .162

In this case, due to the spatial dependence of the system, the model must incorporate also past163

observations and errors from the neighboring spatial orders. In this paper, the first order neighbors164

are those sites which are closer to the location of interest, the second order neighbors are those165

more distant than the first ones, even less distant than the third order neighbors, and so on.166

7
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The STARMA model, denoted by STARMA(p
λ1,λ2,...,λp

, qm1,m2,...,mq
), can be represented by the167

matrix equation:168

z(t) = −
p∑

k=1

λk∑
l=0

ϕklW
(l)z(t− k) +

q∑
k=1

mk∑
l=0

θklW
(l)ε(t− k) + ε(t), (1)

where z(t) = [z1(t), . . . , zN (t)]′ is a N × 1 vector of observations at time t = 1, . . . , T , p represents169

the autoregressive order (AR), q represents the moving average order (MA), λk is the spatial order170

of the k−th AR term, mk is the spatial order of the k−th MA term, ϕkl and θkl are the parameters171

at temporal lag k and spatial lag l, W(l) is the N×N weighting matrix for the spatial order l, with172

diagonal entries 0 and off-diagonal entries related to the distances between the sites. By definition,173

W(0) = IN and each row of W(l) must add up to 1. It is assumed that ε(t) = [ϵ1(t), . . . , ϵN (t)]′,174

the random error vector at time t, is a weakly stationary Gaussian process, with175

E[ε(t)] = 0, (2)

E[ε(t)ε′(t+ s)] =


G, if s = 0

0, otherwise ,

E[z(t)ε′(t+ s)] = 0, for s > 0,

where E(·) is the expected value of the variable.176

There are two subclasses of the model in Equation 1: STAR(p
λ1,λ2,...,λp

) when q = 0 and

STMA(qm1,m2,...,mq
) when p = 0. The stationarity condition is based on:

det

(
IN +

p∑
k=1

λk∑
l=0

ϕklW
(l)xk

)
̸= 0,

for |x| ≤ 1. This condition determines the region of ϕkl values for which the process is weakly177

stationary.178

8
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As explained by Deutsch and Pfeifer (1981), the proper approach to estimation is highly de-179

pendent upon the nature of the variance-covariance matrix of the errors. If G is assumed to be180

diagonal, the model estimation should proceed using weighted least squares method. In particular,181

when the processes for all the N sites have the same variance (G = σ2IN, where IN is the N ×N182

identity matrix), the estimation technique reduces to ordinary least squares.183

Lastly, when G is not diagonal, estimation should be performed using generalized least squares.184

The authors develop procedures for testing hypotheses about G and provide tables of the critical185

values for the proposed tests.186

The covariance between the l and k order neighbors at the time lag s is defined as space-time

covariance function (STCOV). Let E[Z(t)] = 0, the STCOV can be expressed as

γlk(s) = E

{
[W(l)z(t)]′[W(k)z(t+ s)]

N

}
(3)

= tr

{
W(k)′W(l)Γ(s)

N

}
,

where tr[A] is the trace of the square matrix A and Γ(s) = E[z(t)z(t+ s)′]. More details, see for187

example Pfeifer and Deutsch (1980b) and Subba Rao and Antunes (2003).188

2.3.1. Model identification189

The identification of the STARMA model is carried out by using the space-time autocorrelation

function (STACF). The STACF between the l and k order neighbors, at the time lag s, is defined

as

ρlk(s) =
γlk(s)

[γll(0)γkk(0)]1/2
.

Given the vector z(t) = [z1(t), . . . , zN (t)]′ of observations at time t = 1, . . . , T , the estimator of

Γ(s) is given by

Γ̂(s) =
T−s∑
l=1

z(t)z(t+ s)′

T − s
, s ≥ 0.

Γ̂(s) can be substituted in Equation 3 in order to obtain the sample estimates γ̂lk of the STCOV.190

Therefore, the sample estimator of the STACF is191

9
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ρ̂lk(s) =
γ̂lk(s)

[γ̂ll(0)γ̂kk(0)]1/2
. (4)

Pfeifer and Deutsch (1980b) demonstrated that identification can usually proceed strictly on192

the basis of ρ̂l0 for l = 1, . . . , λ.193

Each particular model of the STARMA family has a unique space-time autocorrelation function

(see Table 2). However, if the model is autoregressive but with unknown order, is not easy to

determine its correct order using ρ̂lk(s). This difficulty can be handled using the space-time partial

autocorrelation function (STPACF), which can be expressed as

ρh0 =

k∑
j=1

λ∑
l=0

ϕjlρhl(s− j), s = 1, . . . , k; h = 0, 1, . . . , λ. (5)

The last coefficient, ϕkλ, obtained from solving the system in Equation 5 for λ = 0, 1, . . . and194

k = 1, 2, . . ., is called space-time partial correlation of spatial order λ. The selection of the spatial195

order is established by the researcher. As suggested by Pfeifer and Deutsch (1980b), the value of196

λ must be at least the maximum spatial order of any hypothetic model.197

Table 2: Characteristics of the theoretical STACF and STPACF for STAR, STMA and STARMA models.

Process STACF STPACF

STAR
Tails off with both space
and time

Cuts off after p lags in time
and λp lags in space

STMA
Cuts off after q lags in time
and mq lags in space

Tails off with both space
and time

STARMA Tails off Tails off

2.3.2. Parameter estimation198

Assuming that the ε(t), t = 1, . . . , T , are independent with distinct variances for each of the199

N sites, that is, the variance-covariance matrix G is a N × N diagonal matrix, the maximum200

likelihood estimates of201

10
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Φ = [ϕ10, . . . , ϕ1λ1 , . . . , ϕp0, . . . , ϕpλp ]
′

Θ = [θ10, . . . , θ1λ1 , . . . , θq0, . . . , θqmq ]
′,

the parameter vectors of the STARMA model defined in Equation 1, are obtained by maximizing

the log-likelihood function

l(ε|Φ,Θ,G) = −TN

2
log |2πG| − 1

2

T∑
t=1

ε(t)′G−1ε(t),

= −TN

2
log |2πG| − 1

2
S(Φ,Θ)

where202

S(Φ,Θ) =
T∑
t=1

ε(t)′G−1ε(t), (6)

is the weighted sum of squares of the errors and

ε(t) = z(t) +

p∑
k=1

λk∑
l=0

ϕklW
(l)z(t− k)−

q∑
k=1

mk∑
l=0

θklW
(l)ε(t− k).

Finding the values of the parameters that minimize the log-likelihood function is equivalent203

to finding the values Φ̂ and Θ̂ that minimize the sum of squares in Equation 6. Therefore, the204

problem is reduced to finding the weighted least squares estimates of the parameters.205

Numerical techniques must be used to minimize the sum of squares in Equation 6. Subba Rao206

and Antunes (2003) proposed a procedure for initial estimation of the parameters of S(Φ,Θ) as207

well as an efficient criterion for order determination.208

2.3.3. Model Adequacy209

If the fitted model represents adequately the data, the residuals should have gaussian distri-

bution with mean zero and variance-covariance matrix equal to G. There are several tests to

verify these conditions in the residuals. Particularly, Pfeifer and Deutsch (1980a) and Pfeifer and

11
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Deutsch (1981) suggested to calculate the sample space-time autocorrelations of the residuals and

to compare them with their theoretical variance. The authors proved that, if the model is adequate,

var(ρ̂l0(s)) ≈
1

N(T − s)
,

where ≈ means approximately and ρ̂l0(s) is the space-time autocorrelation function of the fitted210

model residuals. Since the space-time autocorrelations of the residuals should be approximately211

gaussian, they can be standardized for, subsequently, testing their significance.212

Pfeifer and Deutsch (1980a) pointed out that if the residuals have spatial correlation they can213

be represented by a STARMA model. Usually, identifying the model and incorporating into the214

candidate model that generated the residuals, is the best form of updating the model.215

According to Subba Rao and Antunes (2003), the estimated parameters can be tested for216

statistical significance in two ways: use the confidence regions for the parameters to test the217

hypothesis that H0 : Φ = Θ = 0, or test the hypothesis that a particular ϕkl or θkl is zero with218

the remaining parameters unrestricted.219

Let δ̂ = (Φ̂, Θ̂)′ = (δ1, . . . , δK)′ be the least squares estimate of the full parameter vector,

and let δ̂
∗
= (δ1, . . . , δi, . . . , δK)′ be the least squares estimate of the parameter vector with δi,

i = 1, . . . ,K, constrained to be zero. The test for the hypothesis H0 : δi = 0 is based on the

statistic:

Υ =
(TN −K)[S(δ̂

∗
)− S(δ̂)]

S(δ̂)
.

Under H0, Υ is approximately distributed as an F1,TN−K . Any parameter that is statistically220

insignificant must be removed from the model to obtain a simpler model which must be considered221

as candidate and the estimation stage must be repeated.222

12
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Figure 2: SO2 daily average concentrations at the AAQMN monitoring stations (- · - 2005 WHO guideline
−− 2005 WHO interim guideline).

3. Results and discussion223

3.1. Data preparation224

Outliers detection225

Figure 2 shows the time series plots of the six monitoring stations considered in this study.226

Some sites (like Laranjeiras at the beginning of the year 2009, for example) show outliers that can227

affect the modeling and forecasting model performance.228

In this context, Fox (1972) suggested four classes of outliers: additive outliers (AO), level shift229

(LS), temporal change (TC) and innovational outliers (IO). According to (Peña, 2001), the effect230

of AO, TC and LS outliers is limited and independent of the model, AO and TC have transitory231

effects while LS have permanent effects. However, the effect of an IO depends on the kind of model232

and its statistical characteristic.233

We used the methodology proposed by Gomez and Maravall (1998), which is implemented on234

13
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the software TRAMO (http://www.bde.es/), for outliers detection and correction of the time series235

obtained from each monitoring station. Table 3 shows the number of the observation detected as236

outlier as well as its type.237

There were not any IO outliers and the only LS outlier was detected in Cariacica corresponding238

to observation 568 (July 22, 2006). This level shift can be observed in Figure 2, there is a sudden239

fall of concentrations observed from this date on, maybe because of a measuring equipment change240

or any calibration adjusting of the equipment.241

Almost all time series observed have outliers with immediate effects, like observation 1536 in242

Laranjeiras, recorded on March 16th, 2009 (AO outlier); or short-time effects (TC outliers), like the243

observation 848 in Enseada do Suá, corresponding to April 28th, 2007, where there is a temporary244

fall in the concentrations, but rapidly they back to the mean levels.245

Considering the high quantity of outliers detected by the previous analysis, we decided to246

transform all the time series in order to correct the distortions caused by the atypical values.247

Table 3: List of detected outliers at each AAQMN monitoring station.

Outlier type
Station AO LS TC

1536, 1335, 1367, 1755, 1224, 1680, 57, 123, 52,
Laranjeiras 1719, 1378, 1170, 1340, 1290, 1082, 1673, 1409, 1344, 1156

127, 1331, 1402, 1397, 627

Enseada 1029, 897, 882, 889, 343, 178, 848, 970
do Suá 171, 350, 140, 268

1301, 538, 406, 568, 247, 506,
Vitória 302, 365, 188, 1739, 688, 553, 184, 199, 35, 527, 510
Centro 898, 532

Ibes 301, 1800

Vila Velha 447, 629 451, 455, 1725, 1700
Centro

412, 133, 171, 1240, 1246, 203,
Cariacica 92, 68, 1601, 763, 564, 1600, 568

515, 1376, 1235, 97, 196, 636,
812, 817, 415, 952, 140

14
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Cycles determination248

It is well known that air pollution and meteorological data are influenced by cycles and seasons.249

In order to determine the cycles affecting SO2 daily average concentrations, we estimated the250

periodogram for the time series from each monitoring station. The plots of the periodograms are251

not shown due to space constraints, however, the most significant periods are given in Table 4.252

Table 4: Significant cycles by monitoring station.

Station Cycle (days)

Laranjeiras None
Enseada do Suá 16.5, 17.5, 18.5, 82
Vitória Centro 32, 7, 3.5, 19
Ibes 18.5, 16.5, 57, 25
Vila Velha Centro 82, 56.5, 18.5, 75
Cariacica 7, 3.5, 32

The expected period of 7 days (since the time series are daily measurements) is significant only

in Vitória Centro and Cariacica stations, both sites also present significant periods of 3.5 and 32

days. The remaining monitoring stations have significant periods of approximately 19, 57 and 82

days. These findings indicate that SO2 concentration levels are affected not only by weekly cycles,

but also by monthly and seasonal periods. Following Antunes and Subba Rao (2006), we removed

the cyclical component in each time series. Denoting by Y(t) the outliers-corrected time series,

the transformed series to be used for STARMA modeling can be written as

Z(t) = Y(t)−X(t),

where X(t) = [X1(t), . . . , X6(t)]
′ is a periodic function that can be represented as a harmonic series,

i.e.

Xi(t) =

s∑
j=1

[
ξi,j cos

(
2πjt

Cj

)
+ ξ†i,j sin

(
2πjt

Cj

)]
, i = 1, . . . , 6, t = 1, . . . , T

where ξi,j and ξ†i,j are unknown parameters which are estimated by least squares, s is the253

15
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number of significant cycles and Cj represents the period (or cycle) of the time series.254

3.2. Descriptive analysis255

As observed on Figure 2, for every year the average concentrations are lower than the standard256

level established by the Brazilian law (CONAMA No. 03 of 28/06/90) which are: average of257

365µg/m3 for a 24-hour period (cannot be exceeded more than once a year) and annual arithmetic258

average of 80µg/m3. Nevertheless, the concentrations are quite higher than the guideline suggested259

by the World Health Organization (World Health Organization [WHO], 2006), which is 24-hour260

average concentration of 20µg/m3, or even the interim guideline of 50µg/m3 average suggested for261

developing countries like Brazil.262

Particularly, Vila Velha Centro station exceed the interim limit only once in 2006. Cariacica263

station does not exceed any limit and shows the lowest values and variability.264

These assertions can be confirmed from the results displayed in Table 5. Besides, it can be265

observed that some stations show a high variability and maximum values much larger than the266

most of observed concentrations, for example, while 75% of concentrations from Ibes station is267

lower than 14.48µg/m3, the maximum concentration observed is 41.385µg/m3 (more than four268

times the mean value).269

Table 5: Summary statistics of daily average SO2 concentrations in GVR (2005-2009).

Station Minimum 1st. Quartil Median Mean 3rd. Quartil Maximum

Laranjeiras 2.630 9.675 12.100 12.478 14.861 36.770
Enseada do Suá 2.159 10.349 14.195 14.942 18.452 47.288
Vitória Centro 2.417 9.651 13.233 14.165 17.915 42.295
Ibes 0.623 5.738 9.694 10.898 14.476 41.385
Vila Velha Centro 1.288 8.914 11.195 12.422 14.918 54.165
Cariacica 0.479 6.316 7.927 7.872 9.797 17.852

The highest SO2 mean concentrations were observed at Enseada do Suá and Vitória Centro270

stations. This situation can be explained by the direct influence of industrial and port activities271

for both monitoring stations, as showed in Table 1.272

The boxplots shown in Figure 3 show that the mean concentrations and variability are different273

for all stations. Higher concentrations are observed in regions influenced by the main industrial274

activities of GVR, and lower values are observed in regions far away from that influence (like275
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Laranjeiras and Cariacica stations). This behavior suggests there is an influence of the location,276

which reinforces the importance of including spatial characteristics into the model.277

Figure 4 displays the boxplots of the average concentrations by day of the week. As observed in278

Section 3.1, there is a weekly cycle in Vitória Centro and Cariacica monitoring stations because the279

median is slightly lower on weekends and the concentration rises along the week. The remaining280

stations do not show any obvious trend along the week.281
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Figure 3: Boxplots of SO2 daily average by monitoring station.

The sample autocorrelation functions (ACF) of the outliers-corrected SO2 time series obtained282

for each monitoring station are shown in Figure 5. The slow decay of the correlations suggest283

non-stationarity of the time series in all the stations, however, the Augmented Dickey-Fuller test,284

proposed by Dickey and Fuller (1979), was used to examine the hypothesis of stationarity of285

SO2 average concentrations at each monitoring station. Results indicate that there is not enough286

evidence to consider the series as non-stationary (p value < 0.02 for all stations).287

3.3. Weighting matrix288

As indicated by Pfeifer and Deutsch (1980b), the weighting matrix W(l) must be defined prior

to modeling. Since the GVR has a small number of stations irregularly distributed over a relatively

17
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Figure 4: Boxplots of SO2 daily average by day of the week.

small area, it is reasonable to consider each site as first order neighbor of every other site. Therefore,

the maximum spatial order of the STARMA model is one. So we have

W(0) = IN and W(1) = W.

There are several ways to define the weighting matrix, see Cliff and Ord (1981) and Anselin289

and Smirnov (1996). In particular, we chose W formed by weights inversely proportional to the290

Euclidean distance between the monitoring stations since this is the most widely used and simplest291

approach.292

The distance (Km) between the stations was calculated using the expression:293

dij =6378.7× acos(sin(lati/57.296)× sin(latj/57.296) + cos(lati/57.296) cos(latj/57.296)

× cos(lonj/57.296− loni/57.296)),

for i, j = 1, 2, . . . , 6, where lati and loni represent the latitude and longitude of the station i, respec-294
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Figure 5: Autocorrelation Functions for SO2 daily average by monitoring station.

tively (www.meridianworlddata.com/Distance-Calculation.asp). Therefore, the weighting matrix295

W was defined considering weights (wij) as,296

wij =


1/dij , for i ̸= j

0, for i = j.

The weights were scaled so that the sum of the elements at each line equals one. The resulting297

W matrix is:298

W =



0.000 0.252 0.206 0.184 0.211 0.148

0.081 0.000 0.212 0.211 0.409 0.087

0.073 0.232 0.000 0.299 0.235 0.161

0.058 0.208 0.269 0.000 0.348 0.118

0.060 0.359 0.188 0.311 0.000 0.082

0.096 0.176 0.297 0.242 0.188 0.000


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3.4. Fitted model299

From Figures 6 and 7 we can observe that there is no remaining seasonality or cycles in the300

data. According to the characteristics described on Table 2, the slow decaying of the STFAC and301

the cutting-off in the STPACF after the first 6 time lags in the spatial lag zero indicates that a302

suitable model is a STAR with maximum autoregressive order 6.303

The partial space-time autocorrelations are not significant for the spatial order 1 after the first304

time lag, indicating that a spatial order one could be enough. The STACF and STPACF were305

calculated based on the assumption that the errors ε have a diagonal variance-covariance matrix306

G, estimated from the data.307
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Figure 6: Space-time Autocorrelation Function (STACF) for SO2 daily average time series.

The model with the best performance is the STAR(41,0,0,0) with parameters (the standard

20
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Figure 7: Partial Space-time Autocorrelation Function (STPACF) for SO2 daily average time series.

errors are shown in brackets):

ϕ10 = −0.475 (0.0109) ϕ11 = −0.066 (0.0306)

ϕ20 = −0.066 (0.0121) ϕ21 = 0.058 (0.0335)

ϕ30 = −0.108 (0.0121) ϕ31 = −0.004 (0.0335)

ϕ40 = −0.156 (0.0109) ϕ41 = −0.019 (0.0306)

The parameters ϕ21, ϕ31 and ϕ41 were not significant at a 5% level of significance. Therefore,

the final fitted model is:

ẑ(t) = 0.475z(t− 1) + 0.066Wz(t− 1) + 0.066z(t− 2) (7)

+ 0.108z(t− 3) + 0.156z(t− 4).

The sample STACF of the residuals, displayed in Figure 8, shows very small autocorrelation308

values, suggesting that the assumption of uncorrelated errors is satisfied by the fitted model.309

Normality tests and quantile-quantile plots of the residuals (Figure 9) show that the errors are310
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Figure 8: Space-time Autocorrelation Function (STACF) of the residuals from the fitted STARMA(41,0,0,0, 0)
model.

not normally distributed. The lack of Gaussian distribution affects only the inferential process,311

that is, the significance tests as well as the confidence and prediction intervals.312

In order to guarantee the reliability of the model, bootstrap resampling techniques were used313

to obtain confidence intervals for the estimated parameters as well as the prediction intervals. The314

bootstrap approach here adopted was resampling from the residuals ε(t) of the fitted model as315

follows,316

a. Calculate the residual for each observation:

ε̂(t) = z(t)− ẑ(t) t = 1, . . . , T.

b. Select bootstrap samples of the residuals, e⋆b = [ε⋆b(1), . . . , ε
⋆
b(T )]

′, and from these, calculate317

bootstrapped z values z⋆b = [z⋆b(1), . . . , z
⋆
b(T )]

′, where z⋆b(t) = ẑ(t)− ε⋆b(t), for t = 1, . . . , T .318

c. Fit the model using z values to obtain the bootstrap coefficients

δ⋆b = (ϕ⋆
10,b, ϕ

⋆
11,b, ϕ

⋆
20,b, ϕ

⋆
21,b, ϕ

⋆
30,b, ϕ

⋆
31,b, ϕ

⋆
40,b, ϕ

⋆
41,b)

′,
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for b = 1, . . . , r, where r is the number or bootstrap replicates.319

d. The resampled δ⋆b can be used to construct bootstrap standard errors and confidence intervals320

for the coefficients.321

As is well known, the bootstrap samples have the property of mimic the original sample. More322

details about bootstrap techniques can be obtained in Wu (1986), Efron and Tibshrani (1993) and323

Lam and Veall (2002) among others.324
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Figure 9: Quantile-quantile plot of the residuals from the fitted STARMA(41,0,0,0, 0) model.

Figure 10 displays the predicted values of the observed time series by using the fitted model.325

This figure suggests a reasonably good performance of the model. It well captures the variability,326

tendency and the periods of the data.327

The model indicates that SO2 concentrations in a site are highly influenced by the levels pre-328

sented in the previous day (ϕ10 = −0.475). Moreover, the permanence of SO2 in the atmosphere329

of the region is around 3-4 days and the concentration level in a site is influenced by the concen-330

tration observed at its neighbors in the day before. Based on the good in-sample performance of331

the model, it is reasonable to consider it as an alternative method for estimating missing data.332
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Figure 10: Within-sample prediction for the transformed SO2 time series (· · · Observed concentrations —
Predicted concentrations).

3.5. Forecasting333

The fitted model shown in Equation 7 was used in order to determine one-step-ahead forecasts

for a 15-days period, that is, we obtained forecasts for the last two weeks of the full period. The

forecasts were calculated using the Minimum Mean Square Error (MMSE) criterion as

ẑ(1)(t) = E[z(t+ 1)|z(s), s ≤ t].

The forecasts and their 95% prediction intervals are displayed in Figure 11. It can be ob-334

served that forecasts describe well the time series behavior and trend for all the stations. Even335

knowing that Gaussian distribution assumption is not met, the prediction intervals under this336

supposition were calculated only for comparative purposes. It becomes clear that the errors were337

underestimated for the most of stations and, therefore, the reliability of the inferences based on338

the Gaussian assumption was strongly compromised. This fact reinforces the usefulness of the339

resampling techniques in order to perform efficient inferences.340

In particular, for the time series which have the lower variability (Laranjeiras and Cariacica341
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Figure 11: Out-of-sample one-step-ahead forecasts for the transformed SO2 time series (· · · Observed data
– – Forecasted data · – · 95% confidence limits for Gaussian interval — 95% confidence limits for bootstrap
interval).

stations), almost all the real data falls within the prediction intervals and their forecasts are more342

accurate than those for the sites which have observations very distant from the mean, as is the case343

of Enseada do Suá station, for example. For the remaining series, it can be observed that even344

the model capturing the high variability in the data, the discrepant values are not covered by the345

prediction intervals.346

In order to quantify the forecasting ability of the fitted model for each monitoring station we

used the criterions: root mean squared error (RMSE) and mean absolute error (MAE), defined as

RMSEi =

√√√√ 1

H

T+H∑
t=T+1

ϵi(t)2,

MAEi =
1

H

T+H∑
t=T+1

|ϵi(t)|,

where i = 1, 2, . . . , 6 and H = 1, . . . , 15. The MAE measures the average magnitude of errors347

considering their absolute magnitude. The RMSE is also known as the standard error of the348
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forecast and it is more sensitive to outliers than MAE (Hyndman and Koehler, 2006).349

As observed in Table 6, Laranjeiras and Cariacica stations have the most accurate forecasts350

(MAE of about 1.71 and 0.25, respectively). The highest values for the MAE criterion were351

obtained for Ibes, Enseada do Suá and Vitória Centro stations (about 2.64, 2.59 and 2.11, respec-352

tively), which means that the average absolute difference between the forecasts and the observed353

concentrations was approximately 2 µg/m3.354

The most imprecise forecasts were obtained for Enseada do Suá with a residual standard devi-355

ation of 3.04 µg/m3, followed by Ibes station which has a RMSE of 2.91 µg/m3.

Table 6: Model accuracy measures.

Station RMSE MAE

Laranjeiras 2.1409 1.7090
Enseada do Suá 3.0442 2.5917
Vitória Centro 2.5027 2.1073
Ibes 2.9062 2.6408
Vila Velha Centro 2.0422 1.7597
Cariacica 0.2770 0.2503

356

4. Final Remarks357

This study applies a STARMA model to daily average SO2 concentrations in order to describe358

the dynamics of the pollutant at GVR, as well as to forecast future concentrations. The analysis of359

the individual time series at the monitoring stations reveals that there are some significant cycles360

affecting the behavior of the dispersion over the region.361

Based on the fitted model, the persistence of SO2 in the region is about four days and its362

concentration levels are influenced by the levels observed at nearby sites. The residual analysis363

indicated a good fit for in-sample observations, so that it can be used for imputation of missing364

values. Regarding the out-of-sample performance, the model can be a reasonable tool for predicting365

future values with a certain reliability. The higher values of the accuracy measures for the series366
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with more discrepant values indicate that the forecasting capability of the model is highly influenced367

by outliers.368
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