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Abstract

We consider a stationary spatio-temporal random process {Z (s, t) :
(s, t) : s ∈ Rd, t ∈ Z} and assume that we have a sample
{Z (si, t) ; si = 1, 2, ...m; t = 1, . . . , n} from {Z (s, t)}. By defining a
sequence of discrete Fourier transforms at canonical frequencies at each
location si, (i = 1, 2, 3...m) , and using these complex valued random
variables as observed sample, we obtain expressions for the spatio-
temporal covariance functions and the spectral density functions of
the spatio-temporal random processes. These spectra correspond to
non separable class of random processes. The spatio-temporal covari-
ance functions, obtained here are functions of the spatial distances and
the temporal frequency and are similar to Matern class of covariance
functions. These are in terms of modified Bessel functions of the sec-
ond kind, and the parameters are in terms of the second order spectral
density functions of the random proces and the spatial distances. We
consider the estimation of the parameters of the covariance function
and also briefly mention their asymptotic properties. The estimation
of the entire data at a known location s0, {Z(s0, t).;t = 1, 2, 3...n} and
also the estimation of Z (s0, n+ v), for v > 0 given the above sample
is also considered. The predictors are obtained using the vectors of
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Discrete Fourier Transforms.The methods are illustrated with real and
simulated data.
Keywords: Discrete Fourier Transforms, Covariance functions,

Spectral density functions, Space-Time Processses, Prediction(kriging)
Laplacian operators, Frequency Variogram, Long memory processes,
Whittle likelihood.

1 Introduction and Summary

In recent years it has become necessary to develop statistical methods for
analyzing data coming from diverse areas such as, environment, marine bi-
ology, agriculture, finance etc. The data which comes from these areas, are
usually, functions of both spatial coordinates and temporal coordinates.
Any statistical analysis developed must take into account both spatial de-
pendence, temporal dependence and their interaction, if any. There is a
vast literature on spatial analysis, (see [Cre93], for example) but not to
the same extent in the case of spatio-temporal data. An addition of tempo-
ral dimension, which cannot be imbedded into spatial dimension, results in
several problems, such as in spatio-temporal kriging, construction of finite
parameter models for the data etc. One of the important problems often en-
countered and considered to be extremely important is the spatio-temporal
prediction, commonly known as spatio-temporal kriging in the literature.
The object in kriging, in the present context, is to predict the data at a
known location where time series data is not observed, given the time series
data at other locations. If one restricts to the construction of linear predic-
tors as a linear combination of the entire observed data ( the dimensions
of which will be extremely large because of the number of spatial locations
and number of time points) the optimal linear predictor will be a function
of the covariance functions of the process which are functions of the space
and time, and also a function of the data at the location s0 which is not
observed. Besides, as pointed out by Cressie and Wikle [CW11](see chapter
6, p. 323-324), the problem is also related to ordering. Finding a suitable
spatio-temporal covariance function, similar to Matern class, which is pos-
itive definite has become a challenge. However, [CH99], [Gne02], [DR07],
[Ste05], [CG11] and [Ma02] and several authors in recent years (see [CW11]
for details) have defined interesting classes of covariance functions which are
positive definite. The estimation of the parameters of these functions have
been discussed by [CH99] and [Gne02] and others, and recently by Subba
Rao et al [SR13] proposed a frequency domain approach based on frequency
domain version of the variogram for the estimation of the parameters which
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does not involve the inversion of matrices. The methodologies proposed by
several authors for the spatio-temporal prediction which are in the time do-
main depend not only on the knowledge of the covariance function, but also
on the inversion of large dimensional covariance matrices, the dimensions
of which will increase as the number of observations over time and also the
number of locations increase. In our present paper, based on the covariance
functions of the Finite Fourier Transforms of the data we propose a method
for the estimation of the entire data set at a known location s0 and also we
consider the prediction of the future value at (n+ v, v > 0), i.e. estimation
of Z (s0, n+ v).

In section 1, the notation and the spectral representation of the spatio-
temporal random processes are introduced . The spectral representations
of the spatio-temporal processes and the properties of the discrete Fourier
transforms are discussed in section 2. Expressions for the spatio-temporal
covariances and spectral density functions when the random processes satisfy
parametric models are derived in section 3 The estimation of the parameters
of the spatio-temporal covariance functions are considered in section 4. The
prediction of the entire data set at a known location given the data in the
neighborhood using the Fourier transforms is discussed in section 5. In
section 6, simulation of the data with a known covariance function and the
estimation of the parameters of the covariance function is considered. Also
the spatio-temporal prediction is considered in section 6. The methods are
illustrated with real data in section 6.

1.1 Notation and Preliminaries.

Let Z (s, t), where
{

(s, t) : s ∈ Rd, t ∈ Z
}
, denote the spatio-temporal ran-

dom process. We assume that the random process is spatially and temporally
second order stationary, i.e.

E [Z (s, t)] = µ

V ar [Z (s, t)] = σ2Z <∞
Cov [Z (s, t) , Z (s+ h, t+ u)] = c (h, u) , h ∈ Rd, u ∈ Z.

We note that c (h, 0) and c (0, u) correspond to the purely spatial and purely
temporal covariances of the process respectively. A further common stronger
assumption that is often made is that the process is not only spatially
stationary but also it is isotropic. The assumption of isotropy is a stronger
assumption on the process The process is said to be isotropic if

c (h, u) = c (‖h‖ , u) , ‖h‖ ∈ R1, u ∈ Z
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where ‖h‖ is the Euclidean distance. Without loss of generality, we set the
mean µ equal to zero. As in the case of spatial processes, one can define the
spatio-temporal variogram for {Z (h, t)}. It is defined as

2γ (h, u) = V ar [Z (s+ h, t+ u)− Z (s, t)] . (1)

If the random process {Z (s, t)} is spatially and temporally stationary, then
we can rewrite the above as

2γ (h, u) = 2 [c (0, 0)− c (h, u)] , (2)

and for an isotropic process, γ (h, u) = γ (‖h‖ , u). We note that γ (h, u) is
defined as the semi-variogram. Recently, [SRDB13] proposed a frequency
domain version of the variogram which is used later for the estimation of
the parameters of space-time covariance function.

In view of our assumption that the zero mean random process {Z (s, t)}
is second order spatially and temporally stationary,we have the spectral
representation

Z (s, t) =

∞∫
−∞

π∫
−π

ei(s·λ+tµ)dZz (λ, µ) , (3)

where s · λ =
d∑
i=1
siλi and

∞∫
−∞

represents d−fold multiple integral. We note

that Zz (λ, µ) is a zero mean complex valued random process with orthogonal
increments, with

E [dZz (λ, µ)] = 0

E |dZz (λ, µ)|2 = dFz (λ, µ) , (4)

where Fz (λ, µ) is a non-decreasing function. If we assume further that
F (λ, µ) is differentiable in all its (d+ 1) arguments λ and µ, then dF (λ, µ) =
f (λ, µ) dλ dµ. Here f (λ, µ) which is strictly positive and real valued, is de-
fined as the spatio-temporal spectral density function of the random process
{Z (s, t)}, and −∞ < λ1, λ2, . . . , λd <∞, −π ≤ µ ≤ π. In view of the or-
thogonality of the function Zz (λ, µ), we can show that the positive definite
covariance function c (h, u) has the spectral representation

c (h, u) =

∞∫
−∞

π∫
−π

ei(h·λ+uµ)f (λ, µ) dλ dµ (5)

4



and by Fourier inversion, we have

f (λ, µ) =
1

(2π)d+1

∑
u

∞∫
−∞

e−i(h·λ+uµ)c (h, u) dh, (6)

where dh =
d∏
i=1
dhi. We further note that if the process is fully symmetric

then c (h, u) = c (−h,−u) and f (λ, µ) = f (−λ,−µ) and f (λ, µ) > 0 for
all λ and µ. Here λ is the frequency associated with spatial coordinates
(usually called wave number) and µ is the temporal frequency

2 Discrete Fourier Transforms and their proper-
ties

Let us assume that we have a sample {Z (si, t) ; i = 1, 2, ...m; t = 1, . . . , n}
from the zero mean spatio-temporal stationary process {Z (s, t)}. We now
consider the time series data {Z (si, t) ; t = 1, . . . , n} at the location si, and
define the discrete Fourier transform

Jsi (ωk) =
1√
2πn

n∑
t=1

Z (si, t) e
−itωk , (7)

where ωk = 2πk
n , k = 0,±1, . . . ,±

[
n
2

]
. Define the corresponding second

order periodogram by
Isi (ωk) = |Jsi (ωk)|2 .

It is well known that the periodogram is asymptotically an unbiased esti-
mator of the second order spectral density function, but it is not mean square
consistent, and it is also well known that (see for example Priestley,1981[Pri81])

E (Jsi (ωk)) = 0

V ar (Jsi (ωk)) = E (Isi (ωk)) ' gsi (ωk) . (8)

In view of our assumption of spatial and temporal stationarity the second
order spectral density function of the process, {Z (si, t)} is same for all
locations and hence we have,

gsi (ωk) = g (ωk) , for all i

where gsi (ωk) is the second order spectral density function of the spatial
process {Z (s, t)} .We assume that the second order spectral density function
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is a function of some p1 parameters, say ϑ1. From now onwards, we denote
this spectral density function by g (ωk, ϑ1). In view of our assumption that
{Z (si, t)} is temporally second order stationary, it can be shown, that for
large n,

Cov
(
Jsi (ωk) , Jsi

(
ωk′
))
' 0, k 6= k′.

(see [Bri01], [Pri81], [DSR11]). If the random process {Z (si, t)} is Gaussian,
then the complex valued random variables

{
Jsi (ωk) ; k = 0, 1, . . . ,

[
n
2

]}
will

be asymptotically independent, and will be complex Gaussian, each Jsi (ωk)
will be distributed with mean zero and variance proportional to fsi (ωk, ϑ1),
which is equal to g (ωk, ϑ1) in view of our assumption of spatial stationarity.
Let us now evaluate the covariance function between the complex Fourier
transforms Jsi (ωk) and Jsj (ωk). For large n, we can show ([Pri81])

Cov
(
Jsi (ωk) , Jsj (ωk)

)
= E

[
Isi,sj (ωk)

]
' 1

2π

∞∑
n=−∞

c (si − sj , n) e−inωk .

(9)
We note that Isi,sj (ωk) is the cross periodogram between the spatial processes
{Z (si, t)} and {Z (sj , t)}, and unlike the second order periodogram defined
earlier which is always real valued, the cross periodogram is usually a com-
plex valued function. and is aymptotically an unbiased estimator of the
cross spectral density function given by

f(si−sj) (ω) =
1

2π

∞∑
n=−∞

c (si − sj , n) e−inω, |ω| ≤ π (10)

is also usually a complex valued function. However, under spatial isotropy
and temporal stationarity assumptions, we have

c (si − sj , n) = c (‖si − sj‖ , n) = c (‖si − sj‖ ,−n) .

and which in turn implies that the cross spectrum can be written as

f (‖si − sj‖ , ω) = C(‖ h ‖, ω) =
1

2π

∞∑
n=−∞

c(‖si − sj‖ , n)e−inω, |ω| ≤ π

(11)
which is symmetric over the frequency ω and is strictly positive and real
valued. The above is a function of the Euclidean distance ‖ h ‖= ‖si − sj‖
and the temporal frequency ω. We use this function later when we con-
sider prediction of the data at a known location. To obtain the spatio-
temporal spectral density function of the random process defined earlier
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from the above function, we need to take Fourier transforms of the above
over the Euclidean distance ‖si − sj‖. We will obtain expressions for the
spatio-temporal density functions of the processes when they satisfy specific
parametric models.

We now obtain an analytic expression for f (‖si − sj‖ , ω) under the
assumption that random process satisfies a finite parameter model. (see
[Whi53], [Whi54]). The expression derived will be similar to Matern’s class
of functions, but the parameters are functions of the second order spectral
density of the random process. Later we use this covariance function for
prediction. which is one of our main objects in this paper.

2.1 Fourier transform and Spectral Representation

In order to achieve the above objectives, we need a spectral representation
for the discrete Fourier transform and this will be considered in the following
section.

Consider the discrete Fourier transform (7),

Js (ω) =
1√
2πn

n∑
t=1

Z (s, t) e−itω, |ω| ≤ π (12)

for any fixed location s ∈ Rd. Now substitute the spectral representation
(3) for Z (s, t) in (12), and after some simplification, we obtain

Js (ω) =

∫ ∫
eis λ

[
ei(n+1)

ϕ
2 F

1
2
n (ϕ)

]
dZz (λ, µ) (13)

where ϕ = µ − ω,
∫
is a d dimensional multiple integral, (see Priestley,

1981.[Pri81], page 419.) and in obtaining the above, we used the fact that.

n∑
t=1

eitϕ = ei(n+1)
ϕ
2

[
sinnϕ2
sin ϕ

2

]
,

and the Fejér kernel Fn (ϕ) is given by

Fn (ϕ) =
1

2πn

sin2 nϕ2
sin2 ϕ2

.

Hence
n∑
t=1

eitϕ = ei(n+1)
ϕ
2

√
2πnF

1
2
n (ϕ) .
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It is well known that the Fejér kernel behaves like a Dirac Delta function
as n → ∞ and as ϕ → 0, Fn (ϕ) = 0 (n). As pointed out by Priestley

(1981.[Pri81], p. 419), F
1
2
n (ϕ) does not strictly tend to a Dirac Delta δ -

function as n→∞, nevertheless, behaves in a similar manner to a δ function.
In particular as n → ∞ and for all ϕ 6= 0, F

1
2
n (ϕ) → 0, and as ϕ → 0,

F
1
2
n (ϕ) →

√
n
2π . Therefore, as n → ∞, F

1
2
n (ϕ) vanishes everywhere except

at the origin. In view of this, for large n, we can approximately write (13)
as

Js (ω) '
∫
eis λ

√
n

2π
dZz (λ, ω) , (14)

We note that the above integral is over the wave number space λ only. We
use (14) later in our derivation of an expression for the spatio-temporal
covariance function. In the following section we define a model similar
to the models defined by Whittle(1953,1954 )[Whi53], [Whi54], Jones and
Zhang(1997)[JZ97], but we use the Laplacian operators on the complex val-
ued random variables ( Discrete Fourier transforms) to obtain expressions
for the spatio-temporal spectral density functions and covariances which are
functions of the spatial distances and the temporal frequencies. In their
derivation, Jones and Zhang(1997)[JZ97] use a first order time derivative to
accommodate the temporal dynamics, but in our derivation we use the fre-
quency response function of the process to account for the temporal linear
dependence in the time series.

3 Model and Derivation of the covariance func-
tion

We assume that corresponding to the spatio-temporal random process{
Z (s, t) ; s ∈ Rd, t ∈ Z

}
, we have a spatio-temporal random process{

e (s, t) ; s ∈ Rd, t ∈ Z
}
which is like a white noise process in space and time.

Similar assumptions are often made in spatial spatio-temporal analysis (
for example see [CW11], [Gne02], [She11]) We assume that the random
process {e (s, t)} satisfies the following stationarity conditions

E (e (s, t)) = 0

V ar (e (s, t)) = σ2e, does not depend on s or t.

Cov
(
e (s, t) , e

(
s′, t′

))
= σ2eI

(
s, s′

)
I
(
t, t′
)
,
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where

I(s, s′) =

{
1 if s = s′

0 otherwise

I(t, t′) =

{
1 if t = t′

0 otherwise.

As before, we assume that we have a sample {e (si, t) ; i = 1, . . . ,m; t = 1, . . . , n}
corresponding to the observable spatio-temporal data
{Z (si, t) ; i = 1, . . . ,m; t = 1, . . . , n}. We define the discrete Fourier trans-
form of these white noise processes

Js,e (ω) =
1√
2πn

n∑
t=1

e (s, t) e−itω, (15)

where we assume, that the stationary process e (s, t) has the spectral rep-
resentation

e (s, t) =

∫ ∫
ei(s. λ+tµ)dZe (λ, µ) , (16)

where the orthogonal random process Ze (λ, µ) satisfies

E [dZe (λ, µ)] = 0

E |dZe (λ, µ)|2 =
σ2e

(2π)d+1
dλdµ.

Substituting (16) in (15) and proceeding as before, we obtain, for a fixed
temporal frequency ω,

Js,e (ω) '
∫
eis·λ

[√
n

2π

]
dZe (λ, ω) . (17)

where
∫
is a multiple integral. It is important to note that the integration

is over only a wave number space.
For convenience of exposition, we consider the case d = 2., and later

we will generalize this to any d. We define the Laplacian operator on the
complex valued random variables, Js (ω) and Js,e (ω) (here s = (s1, s2)). Let
υ > 0, and define the model[

∂2

∂s21
+

∂2

∂s22
− |c (ω)|2

]ν
Js (ω) = Js,e (ω) . (18)

where Js (ω) and Js,e (ω) are given by (14) and (17) respectively. We will
see the significance of the frequency dependent function c (ω) in the above
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equation when we specialize the case ν = 1. Now substitute the represen-
tations (14) and (17) in (18) and taking the operators inside the integrands
and equating the integrands both sides of the equations ( because of the
uniqueness of the Fourier transforms this is valid), we obtain(

−λ21 − λ22 − |c (ω)|2
)ν
dZz (λ, ω) = dZe (λ, ω) , (19)

where λ = (λ1, λ2). Taking the modulus square, and taking expectations
both sides of the modulus squares we obtain the spatio-temporal spectral
density function. of the spatio-temporal process Z (s, t) satisfying the above
model (18) and it is given by

fz (λ, ω) =
σ2e

(2π)2
(
λ21 + λ22 + |c (ω)|2

)2ν (20)

Now we use the result for inverse transforms given in Whittle (1954.equa-
tion (65) ) (note that we are considering the Isotropic processes) to obtain
the covariance function. We have,

1

4π2

∫ ∫
ei(xω1+yω2)(

ω21 + ω22 + α2
)µ+1dω1dω2 =

1

2π

( r

2α

)µ Kµ (αr)

Γ (µ+ 1)
,

where r =
(
x2 + y2

) 1
2 , Kµ (x) is the modified Bessel function of the second

kind of order µ, Using the above result to obtain the inverse transform of
(20) ,we obtain

σ2e

(2π)2

∫ ∫
ei(h1λ1+h2λ2)(

λ21 + λ22 + |c (ω)|2
)2ν dλ1dλ2 (21)

=
σ2e
2π

(
‖h‖

2 |c (ω)|

)2ν−1 K2ν−1 (|c (ω)| ‖h‖)
Γ(2ν)

where ‖h‖ =
(
h21 + h22

) 1
2 . We note that ,under isotropy assumption, (21) is

the covariance between the discrete Fourier Transforms Js (ω) and Js+h (ω),
where h = (h1, h2). This covariance function is a function of the distance‖h‖
and the temporal frequency ω. Hence, we have

Cov (Js (ω) , Js+h (ω)) = C (‖h‖ , ω)

=
σ2e
2π

(
‖h‖

2 |c (ω)|

)2ν−1 K2ν−1 (|c (ω)| ‖h‖)
Γ(2ν)

(22)
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To see the significance of inclusion of |C(ω)| in the model (18), we study
the limiting behavior of (22) as ||h|| → 0. We have noted earlier that
V ar (Js (ω)) is proportional to the spectral density function g (ω) of the
random process for all s. So it is interesting to examine the behavior of
C (‖h‖ , ω) when ‖h‖ → 0, as the limit must tend to the second order spec-
tral density function g (ω) of the spatio-temporal process defined earlier.

It is well known that, for all ν > 0,

lim
x→0

xνKν (x)

2ν−1Γ (ν)
= 1. (23)

Therefore, if we take the limit of C (‖h‖ , ω) given by (22) as ‖h‖ → 0, we
get (using (23)),

C (0, ω) =
σ2e

2
(
|c (ω)|2

)2ν−1
(2ν − 1)

= g (ω) . (24)

From (22) and (24), we obtain the correlation coeffi cient

ρ (‖h‖ , ω) =
C (‖h‖ , ω)

C (0, ω)
=

=
(‖h‖ |c (ω)|)2ν−1

22ν−2Γ (2ν − 1)
K2ν−1 (|c (ω)| ‖h‖) . (25)

From (24), we observe that the function |c (ω)|, which we used in defining the
model (18) is in fact related to the second order spectral density function.

Consider the case of general d. Let ρ = ‖λ‖. We have ,

C (‖h‖ , ω) =
σ2e

(2π)d

∫
Rd

e−ih·λ(
‖λ‖2 + |c (ω)|2

)2ν dλ
=

σ2e

(2π)d

∫ ∞
0

ρd−1(
ρ2 + |c (ω)|2

)2ν ∫
Sd−1

e−iρ‖h‖ cosαdΩdρ

where Sd−1 is the unit sphere in Rd and Ω is Lebesque element of surface
area on Sd−1. Further we know∫

Sd−1
e−iρ‖h‖ cosαdΩ = (2π)

d
2 (ρ ‖h‖)−

d
2
+1 J d

2
−1 (ρ ‖h‖) ,

11



where J d
2
−1 denotes the Bessel function of the first kind, see [SW71], p.176.

Now we use Hankel-Nicholson Type Integral, see [AS92], 11.4.44, if d <
4ν + 3, then∫ ∞

0

J d
2
−1 (rρ)(

ρ2 + |c (ω)|2
)2ν ρ d2 dρ =

r2ν−1 |c (ω)|
d
2
−2ν

22ν−1Γ (2ν)
K d

2
−2ν (r |c (ω)|) .

Using the above integrals and noting K d
2
−2ν = K2ν− d

2
, we obtain for all d

the covariance function

C (‖h‖ , ω) =
σ2e

(2π)
d
2 22ν−1Γ (2ν)

(
‖h‖
|c (ω)|

)2ν− d
2

K2ν− d
2

(‖h‖ |c (ω)|) ,

and the correlation function is given by

ρ (‖h‖ , ω) =
(‖h‖ |c (ω)|)2ν−

d
2

22ν−
d
2
−1Γ

(
2ν − d

2

)K2ν− d
2

(‖h‖ |c (ω)|) ,

because

C (0, ω) =
σ2e

(2π)
d
2 2

d
2

(
|c (ω)|2

)2ν− d
2

Γ
(
2ν − d

2

)
Γ (2ν)

= g (ω) .

3.1 Special case:

To understand the significance of the equation (24), we consider the special
case ν = 1. By substituting ν = 1 in (25), we obtain

ρ (‖h‖ , ω) = (‖h‖ |c (ω)|)K1 (‖h‖ |c (ω)|) ,

a well known form except that the argument of the Bessel function is in
terms of the function of c (ω) ,a function of the temporal frequency. From
(24), we get when ν = 1

C (0, ω) =
σ2e

2 |c (ω)|2
= g (ω) > 0,

which implies that |c (ω)|2 is proportional to g−1 (ω), which is defined as
the inverse second order spectral density function of the process. Let us
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assume that g−1 (ω) is absolutely integrable, then g−1 (ω) can be expanded
in Fourier series,

g−1 (ω) =
1

2π

∞∑
k=−∞

ci (k) cos kω, |ω| ≤ π.

where we used the fact that g−1 (ω) = g−1 (−ω). The functions {ci (k)} are
known as inverse autocovariance functions, and are usually used to estimate
the order of linear time series models. For example, if the series {Z (s, t)}
satisfies for each s an autoregressive model of order p say, then it can easily be
shown that ci (k) = 0 for all k > p, hence can be used to determine the order
of the model. In other words, the covariance function C (‖h‖ , ω) which is
in terms of the modified Bessel function is related to the spatial distance
‖h‖, and also a function which is related to the temporal dependence.

Now it is interesting to examine the case when g(ω) is independent of
the frequency, which implies that the time series at each location is a white
noise process. This assumption in turn implies that |c (ω)|2 is a constant,
say α2. Substituting this in (20) we see that the spatio-temporal spectral
density function is proportional to only a positive definite function of the
wave number λ.

3.2 Long Memory Process

If the spatio-temporal processes exhibits the long memory property, it is
possible to accommodate this property in our definition of the model (18)
by choosing appropriately the function |c(ω)| as follows.

Suppose the process {Z(s, t)}, for each s, exhibits the long memory prop-
erty (see Beran et al (2013) []) and we assume it can be modelled by a
Fractional Autoregressive Moving Average Model (FARIMA) (p, d, q) of the
form

φp(B)(1−B)dZ(s, t) = ψq(B)e(s, t)

where −1/2 < d < 1/2 and the process {e(s, t)} is a Gausian white noise in
space and time. Then, it is well known that the spectral density function of
the stationary process {Z(s, t)} is given by

g(ω) =
σ2e
2π

∣∣∣∣∣ψq(e−iω)

φp(e
−iω)

∣∣∣∣∣
2

|1− e−iω|−2d, |ω| ≤ π

If we choose g(ω) as above and since |c(ω)| and g(ω) are related as in equation
(24), by using the function c(ω) thus obtained, we get a spatio-temporal
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process with long memory property. The long memory parameter d can be
estimated using the criterion to be defined in later sections. We hope to
consider the estimation and their properties in detail in later publications.

4 Estimation of the parameters of the covariance
function.

Let C (‖h‖ , ω) , given by (22), be a function of the parameter vector ϑ, and
now onwards we denote this function by C (‖h‖ , ω; ϑ), and similarly we
write the correlation function given by (25) as ρ (‖h‖ , ω; ϑ). Our object is
to estimate ϑ. We note that ω is the temporal frequency, ‖h‖ is the spatial
Euclidean distance. To estimate the parameters ϑ, we use the frequency do-
main method recently proposed by Subba Rao [SRDB13] based on frequency
variogram defined. We briefly summarize the procedure of [SRDB13]. We
now define a new spatio temporal random process from {Z (s, t)}.

Yij (t) = Z (si, t)− Z (sj , t) , for each t = 1, 2, . . . , n

and for all locations si, sj where si and sj (i 6= j)are the pairs that belong
to the set N(hl) = {si, sj ; ‖si − sj‖ = ‖hl‖ , l = 1, 2, . . . , L}. Define the
Finite Fourier transform (F.T.) of the new time series {Yij (t) ; i 6= j} at the
Fourier frequencies ωk = 2πk

n , k = 0, 1, . . . ,
[
n
2

]
,

Jsi,sj (ωk) =
1√
2πn

n∑
t=1

Yij (t) e−itωk = Jsi (ωk)− Jsj (ωk) , (26)

where

Jsi (ωk) =
1√
2πn

n∑
t=1

Z (si, t) e
−itωk , (i = 1, 2, . . . ,m) .for all i

Let Isi,sj (ωk) be the second order periodogram of the time series {Yij (t)}
given by

Isi,sj (ωk) =
∣∣Jsi,sj (ωk)

∣∣2 =
1

2π

n−1∑
u=−(n−1)

ĉy,ij (u) e−iuωk ,

where

ĉy,ij =
1

n

n−|u|∑
t=1

(
Yij (t+ u)− Y ij

) (
Yij (t)− Y ij

)
, |u| ≤ n− 1

14



is the sample autocovariance of lag u of the time series {Yij (t)}, and Y ij =

1
n

n∑
t=1

Yij (t). From (26), we obtain

E
[
Isi,sj (ωk)

]
= E [Isi (ωk)] + E

[
Isj (ωk)

]
− 2 Real E

[
Isisj (ωk)

]
, (27)

where Isisj (ωk) is the cross periodogram between the processes {Z (si, t)}
and {Z (sj , t)}. For large n, we can show for an isotropic process, the ex-
pectation (27) is

gsi,sj (ωk;ϑ) = g‖h‖ (ωk;ϑ) = 2 [C (0, ωk; ϑ)− C (‖h‖ , ωk; ϑ)] , (28)

where g‖h‖ (ωk;ϑ) is the spectral density function of the stationary process
{Yij (t)}, C (0, ωk; ϑ) = g (ωk, ϑ) is the spectral density of the process
{Z (si, t)} for all i, and C (‖h‖ , ωk; ϑ) is the spatio temporal covariance
between Jsi (ωk) and Jsj (ωk) an expression of which we obtained earlier
(22). [SRDB13] gsi,sj (ωk;ϑ) as the frequency domain version of the var-
iogram. It has similar properties as in the case of time domain as can be
shown below.

4.1 Frequency Variogram, measurement errors and
Nugget Effect

Consider the variogram equation (28). We would expect, the function
g‖h‖ (ω;ϑ) if plotted against the distance ‖ h ‖(for all ω), will pass through
the origin( i.e. as ‖ h ‖ tends to zero). Let us assume that there are mea-
surement errors in the observed data, i.e. we observe Z̃(s, t) instead of
Z(s, t), where for each s and t, Z̃(s, t) = Z(s, t) + η(s, t). We assume that
the random errors η(s, t) are independent of Z(s, t), and is a white noise
process in both s and t,. Also assume that it has zero mean and variance
equal to σ2η. Then we can easily show that the function g‖h‖ (ω;ϑ) instead
of passing through the origin will have a jump of magnitude proportional
to σ2η which will be the second order spectral density function of the white
noise process η(s, t). This is called Nugget effect in the context of spatial
analysis.

Now for the estimation of the parameter vector ϑ we proceed as in
[SRDB13]. We consider the complex valued random vector,

J ′‖h‖ (ω) =
[
Jsi,sj (ω1) , Jsi,sj (ω2) , . . . , Jsi,sj (ωM )

]
which is distributed asymptotically as normal with mean zero and with
variance covariance matrix with diagonal elements

[
g‖h‖ (ω1) , g‖h‖ (ω2) ,
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. . . , g‖h‖ (ωM )
]
. We note that because of asymptotic independence of

Fourier transforms at Fourier frequencies defined, the off diagonal elements
of the variance covariance matrix are zero. The minus log likelihood function
can be shown to be proportional to

Qn,N(h) (ϑ) =
1

|N (h)|
∑

(si,sj)∈N(h)

M∑
k=1

[
ln gsi,sj (ωk;ϑ) +

Isi,sj (ωk)

gsi,sj (ωk;ϑ)

]
.

(29)
where gsi,sj (ωk;ϑ) is the variogram given by (28) and Isi,sj (ωk) is the peri-
odogram of the {Yij (t)}. Here N (h) is the collection of all distinct pairs si
and sj such that N (h) = {(si, sj) ; ‖si − sj‖ = N (h)}. The above criterion
(29) is defined only for one distance ‖h‖. Suppose we now define L spatial
distances from the above data, we can define an over all criterion

Qn (ϑ) =
1

L

L∑
l=1

Qn,N(hl) (ϑ) (30)

and minimize (30) with respect to ϑ. In defining the above, we have given
equal weights to all the distances. The asymptotic normality of the estimator
ϑ obtained by minimizing (30) has been proved in Theorem 2 of the paper
of [SRDB13]. It has been shown, that under certain conditions,

√
n (ϑn − ϑ0)

D−→ N
(
0,∇2Q−1n (ϑ0)V∇2Q−1n (ϑ0)

)
,

where V = lim
n→∞

var
[
1√
n
∇Qn (ϑ0)

]
, ∇Qn (ϑ0) is a vector of first order par-

tial derivatives, ∇2Qn (ϑ0) is the matrix of second order partial derivatives.
In view of the relation (28) and because (29) and (30) are in terms of the
frequency variogram gsi,sj (ωk;ϑ), we can rewrite the above expression in
(29) in terms of ρ (‖h‖ , ω; ϑ) as well. We note

gsi,sj (ωk;ϑ) = 2C (0, ωk; ϑ) [1− ρ (‖h‖ , ω; ϑ)] , (31)

where |ρ (‖h‖ , ωk; ϑ)| ≤ 1. This correlation coeffi cient is the coherency
coeffi cient defined earlier by Subba Rao et al [SRDB13]. Therefore, we can
rewrite (29) as

Qn,N(h) (ϑ) =
1

|N (h)|
∑

(si,sj)∈N(h)

M∑
k=1

[ln 2 + lnC (0, ωk; ϑ)

+ ln [1− ρ (‖h‖ , ωk; ϑ)] +
Isi,sj (ωk)

2C (0, ωk; ϑ)
[1− ρ (‖h‖ , ωk; ϑ)]−1

]
.
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Since |ρ (‖h‖ , ωk; ϑ)| < 1, as an approximation we may consider alterna-
tively minimizing, Qn,N(h) (ϑ), given by

Qn,N(h) (ϑ) ' 1

|N (h)|
∑

(si,sj)∈N(h)

M∑
k=1

[lnC (0, ωk;ϑ)

+ρ (‖h‖ , ωk;ϑ) +
Isi,sj (ωk)

2C (0, ωk; ϑ)
ρ (‖h‖ , ωk;ϑ)

]
.

5 Spatio-temporal prediction

Our object in this section is to estimate {Z (s, t) ; t = 1, 2, . . . , n} at the lo-
cation s0 given the m−time series {Z (si, t) ; i = 1, 2, . . . ,m; t = 1, 2, . . . , n}
from the spatio-temporal stationary and isotropic process {Z (s, t)}. In
other words, we are estimating the entire data set at the location s0 over
the same period . Using the estimated set of observations at the loca-
tion s0, we will also obtain optimal linear predictors of the future values,
following a methodology similar to Box and Jenkins [BJ76].As in the case
of the observed data {Z (si, t)}, we define the discrete Fourier transform of
{Z (s0, t)} the data of which is not available, by

Js0 (ω) =
1√

(2πn)

n∑
t=1

Z (s0, t) e
−itω, (32)

and by inversion, we have

Z (s0, t) =

√
n

2π

π∫
−π

Js0 (ω) eitωdω. (33)

In other words given {Js0 (ω) , for all − π ≤ ω ≤ π}, we can uniquely re-
cover the time series sequence {Z (s0, t) ; t = 1, . . . , n}. In view of this ob-
servation, we consider here the estimation of Fourier Transform Js0 (ω) for all
ω, and from these complex valued observations, we can estimate {Z (s0, t)}
using the above equation(33). Consider the vector of the discrete Fourier
transforms at a single frequency ω,

J ′m (ω) = [Js1 (ω) , Js2 (ω) , . . . , Jsm (ω)] .

We note

E [Jm (ω)] = 0

E [Jm (ω) J∗m (ω)] = Fm (ω) , (34)
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where the square matrix Fm (ω) = (C (‖si − sj‖ , ω) ; i, j = 1, 2, . . . ,m),
and each element of C (‖si − sj‖ , ω) is given by (22). The complex random
vector Jm (ω) has a multivariate complex Gaussian distribution with mean
zero and variance covariance matrix Fm (ω), and the matrix is real and
symmetric. Consider now the (m+ 1) dimensional complex valued random
vector,

J ′m+1 (ω) =
[
J0 (ω) , J ′m (ω)

]
,

which has zero mean, and variance covariance matrix

E
[
Jm+1 (ω) J∗m+1 (ω)

]
=

[
C0 (0, ω) E (J0 (ω) J∗′m (ω))

E (Jm (ω) J∗0 (ω)) E (Jm (ω) J∗m (ω))

]
=

[
C0 (0, ω) G′0 (ω)
G0 (ω) Fm (ω)

]
,

where C0 (0, ω) = E (J0 (ω) J∗0 (ω)) = C (0, ω), which is the second order
spectral density function of the spatial process and it is given by (24), and
the row vector G′0 (ω) is given by

G′0 (ω) = E
[
J0 (ω) J∗′m (ω)

]
= [C (‖s0 − s1‖ , ω) , C (‖s0 − s2‖ , ω) , . . . , C (‖s0 − sm‖ , ω)]

and Fm (ω) is defined above.. Therefore, the optimal linear least squares
prediction of J0 (ω) given the vector Jm (ω), is given by the conditional
expectation

E [J0 (ω) |Jm (ω)] = G′0 (ω)F−1m (ω) Jm (ω) (35)

and the minimum mean squared error is given by

σ2m (ω) = C (0, ω)−G′0 (ω)F−1m (ω)G0 (ω) . (36)

It is interesting and important to note from the equations (35 and 36) that
the evaluation of the conditional expectation and the minimum mean square
error involves only inversion of m×m dimensional matrices, unlike in the
case of the time domain approach for prediction where one needs to invert
mn ×mn dimensional matrices. In many real data analysis the number of
time points n will be very large. and m can be large too . Besides, there is
no ordering problem involved here (see [CW11] p. 324). Once we have an
expression for covariance function C (‖h‖ , ω), all the elements of the column
vector G0 (ω) and the elements of Fm (ω) are known. By substituting the
relevant expressions, we can evaluate (35) and (36). Usually , the covariance
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functions will have parameters which need to be estimated and this was
considered earlier.

In obtaining the above, we assumed that the mean of the random process
i.e. E (Z (s, t)) = 0,which is known as Ordinary Kriging in the literature.
If E (Z (s, t)) = µ (s, t) 6= 0, the usual approach is to model it in terms of
covariates, and consider the estimation of the parameters. Once the parame-
ters are estimated, one can use the estimated mean function in defining the
Fourier Transforms., and consider the estimation and prediction as before.
The estimation and the properties of the estimators will be considered in
later publications.

. Let us now denote the estimate of the conditional expectation (35) by
Ĵ0 (ω), and therefore the estimate of J0 (ω) is given by

Ĵ0 (ω) = Ĝ
′
0 (ω) F̂

−1
m (ω) Jm (ω) . (37)

We can now estimate the time series by inverting using the equation (33).
As pointed out earlier,in evaluating the above expression we need the spatio-
temporal covariances, and the estimates of the parameters of the covariance
functions which were considered earlier.. These involve unknown parame-
ters, and can be estimated using methods described earlier. We use these
estimated covariances to calculate the above Fourier transform. Using the
above estimated Fourier Transform, we can now estimate the entire time
series {Z (s0, t) ; t = 1, 2, . . . , n}.,.Using this as our data, we can find opti-
mal linear predictors of Z(s0, n + v) for all v > .0.The methodology ( Box
and Jenkins, 1976 ) is well known, and hence details are omitted. In the
parametric approach, a suitable linear time series model is assumed and
fitted and, then the fitted model is used for the prediction of the future val-
ues. Since we have already computed Fourier transforms, it is convenient to
describe the frequency domain approach for the estimation, which is based
on Whittle likelihood approximation.

Briefly we describe Whittle likelihood approach. Let us assume that the
second order stationary time series {Z (s0, t)} satisfies a linear time series
model, and let g0

(
ω, ψ

)
|ω| ≤ π denote the second order spectral density

function of the process and let the parameter vector be denoted by a q
dimensional vector ψ′ :=

(
ψ1, ψ2, . . . , ψq

)
. We have the Fourier Transforms

J0 (ω) for all ω The parameter vector ψ can now be estimated by minimizing
the approximate negative log likelihood function,.∫ [

ln g0
(
ω, ψ

)
+
|J0 (ω)|2

g0
(
ω, ψ

)] dω
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with respect to ψ. The asymptotic sampling properties of the estimator
ψ are now well established. and hence will not be repeated here. Having
fitted a linear model to the data, it is now possible to obtain the optimal
forecasts of the future values. Since the methodology is well known we omit
the details.

6 Simulations and Real Data Analysis:

In the following we briefly indicate the procedure to generate a stationary
spatio-temporal random process{Z (si, t) ; i = 1, 2, . . . ,m; t = 1, 2, . . . , n} at
locations {si} with a given covariance spatio-temporal covariance function
of the form given by (22). In order to generate the data , we simulate
the Discrete Fourier Transforms {J (ωk), k = 0, 1, . . . , n − 1},and then by
inversion we obtain the data. We briefly outline the steps.

6.1 Simulation:

1. The locations s′i; i = 1, 2, . . . ,m are chosen randomly from the unit
square and scaled by the max (‖s′i‖), thus obtaining the scaled loca-
tions si = s′i/max (‖s′i‖) with Euclidean distances di,j = ‖si − si‖.We
, note that max (‖si‖) = 1.Here for our illustration purposes we have
chosen d=2 and the number of locations m = 9. We estimated the
data at the location 10.

2. The number of observations n is even, n = 211, and we generated a
series of independent complex Gaussian zero mean random vectors Uk

of order m× 1, k = 0, 1, . . . , n/2, , such that V ar (Uk) = I an identity
matrix. We note that U0 and Un/2 are real valued random vectors ..

3. We assume the spatio-temporal process Z(s, t), for each s,satisfies
an ARMA(2,1) model and has the second order spectrum given by
g (ω) =

(
σ2/2π

) ∣∣ϑ (e−2iπω) /ϕ (e−2iπω)∣∣2 . The roots of the polyno-
mials ϕ (z) and ϑ (z) are greater than one in modulus. We have chosen
the polynomials of the form

ϕ (z) = 1 + 4/17z + 4/17z2,

ϑ (z) = 1− 2/3z.

4. Let ωk = 2πk/n, k = 0, . . . , n/2, σ = 2, and let C (0, ωk) = g (ωk),
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where ( the equations (24) and (25) with [ν = 1])

c (ωk) =

√
1

2g (ωk)
,

and
ρ (di,j , ωk) = (di,j |c (ωk)|)K1 (di,j |c (ωk)|) ,

i, j = 1, 2, . . . ,m.

5. Generate a series of covariance matrices Ck , k = 0, 1, . . . , n/2, with
order m × m and with entries ci,j (k) = C (0, ωk) ρ (di,j , ωk), (note
di,j = ‖si − si‖). Let the vectors J (ωk) = [Jsi (ωk)]

m
i=1 =

√
CkUk.

The variance covariance matrix of J(ωk) = Ck. For indices k = n/2 +
1, . . . , n− 1 we put J (ωk) = J

(
ωn/2−k

)
.

6. From equation (33) we note that the inverse Fourier transform of J (ωk)
gives us the spatio-temporal data Z (si, t).

6.2 Estimation of the parameters and Prediction of Ẑ (s0, t)

We briefly describe the steps required to estimate the parameters ϑ and
also the steps required for prediction. We now assume that we have the
spatio-temporal data {Z (si, t) ; i = 1, 2, . . . ,m; t = 1, 2, . . . , n} .

1. 1. Let Yij(t) = Z(si, t)− Z(sj ,t) as defined in section 4. We compute
the Discrete Fourier Transform of the differenced series Yij(t) which
is the difference of the individual series {Z(si, t)}and {Z(sj , t)}. The
parameters of the correlation function is now estimated by minimizing
the criterion (30) .

2. We choose a new location s0 randomly and rescale the locations if it
is necessary.

3. The parameters of the polynomials ϕ (z), ϑ (z) and variance σ2 are
estimated in the case of our simulated data(see section 6.1) , and they
are given by σ̂ = 2.0744,

ϕ̂ (z) = 1 + 0.2404z + 0.2356z2,

ϑ̂ (z) = 1− 0.6406z.

These estimates are very close to the true values .
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Budapest Debrecen Szeged Szombathely
Budapest 0 195.5222 161.6584 182.4531

Debrecen 195.5222 0 180.6993 377.2415

Szeged 161.6584 180.6993 0 287.0954

Szombathely 182.4531 377.2415 287.0954 0

Table 1: Distances Matrixt

4. The matrix Ck above is calculated using the estimated parameters and
the inverse F̂

−1
m (ωk), is evaluated for each ωk . We have

G′0 (ωk) = Ĉ (0, ωk) [ρ̂ (d0,1, ωk) , ρ̂ (d0,2, ωk) , . . . , ρ̂ (d0,m, ωk)] ,

where d0,j = ‖s0 − s1‖.

5. The Fourier transform of the predicted series Ẑ (s0, t) is given by

Ĵ0 (ωk) = Ĝ
′
0 (ωk) F̂

−1
m (ωk)J (ωk). Now the inverse Fourier transform

of Ĵ0 (ωk) is evaluated using the equation (33) ( considering the dis-
crete sum) gives the predicted time series Ẑ (s0, t) for all t. The Figure
1 shows the simulated data according to the model of the Section 6.1.
and its prediction.

6. In Figure 2, the log of the true spectrum spectrum g (ω), the log of
the estimated ĝ (ω)spectrum and log of the periodogram Ĵ0 (ωk), are
plotted , and the smoothing of this function gives an estimate of the
spectral density function. We note that the estimated periodogram is
very close to the true underlying spectrum indicating the prediction
methodology does give good results.

6.3 Real Data

We consider Hungarian Meteorological Service (OMSZ) Climate time Series
(http://met.hu/eghajlat/magyarorszag_eghajlata/) 50 years(1951-2000) monthly
averages (n = 600) at four locations, namely, Budapest, Debrecen, Szeged
and Szombathely. In Table 1, the distances (in Km) between these locations
are given. The time series plots are given in Figure .

Because of presence of 12 months seasonality, we fitted a harmonic re-
gression of the following form, and the estimates of the coeffi cients are sum-
marized in Table 2.
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Figure 1: Simulated data (above) and its prediction
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Figure 2: Log true spectrum and Log estimated spectrum (simulated)

Coeff Coeff Budapest Coeff Debrecen Coeff Szeged Coeff Szombathely
β0 11.23400000 9.95600000 10.47483333 9.30866667

β1 −9.39699315 −9.81061040 −9.68566405 −9.02813423

β2 −5.41628301 −5.63468533 −5.68347870 −5.36693388

Table 2: Seasonal Parameter Estimates

Xt = β0 + β1 cos

(
2π

12
t

)
+ β2 sin

(
2π

12
t

)
+ et,

It has been found that an ARMA (1,1) of the form
(1 + φ1B)Z(s, t) = (1 + θ1B)e(s, t) with var e(s, t) = σ2e will fit well to the
residuals thus obtained for the de-seasonalised data. The estimates of the
parameters of these models for each location is summarized in the following
Table 3.

The final estimates of the ARMA(1,1) model obtained by minimizing
(30) are given by σ̂e = 1.8501, φ̂1 = −0.0296, θ̂1 = 0.2231. The estimated
log spectrum from the original data and the log periodogram computed
from the estimated data for each of the four cities is given in Figure 4. It is
interesting to see the close behavior of the estimated log periodogram to the
estimated log spectrum. It has to be noted that the log periodogram needs
smoothing to obtain a consistent estimate.
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Figure 3: Time series plots of city temperatures

σ̂2e φ̂1 θ̂1
Budapest 3.288912 0.137256 0.022879

Debrecen 3.768498 0.147554 0.042078

Szeged 3.795002 0.123754 0.086649

Szombathely 3.186594 0.547764 −0.382492

Table 3: Estimates of ARMA Parameters
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Figure 4: Log Periodogram vs Log Estimated Spectrum
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