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Abstract

For two non-adjacent vertices x and y of a simple graph G, a xy vertex separator is a
set of vertices S ⊆ V (G), whose removal disconnects x and y. S is a minimal xy vertex
separator if no proper subset of S is a xy vertex separator. This article characterizes
some good classes of graphs, like the chordal graphs, based on the nature of the induced
graph (MVS) on their minimal vertex separators which are C-free, where C ∈ C are
small graphs on 2 and 3 vertices, namely, C = {K2, K2, K3, K1 ∪K2, P3, K3}. K2-free
MVS graphs are the chordal graphs. Also K3-free, K1 ∪ K2-free and P3-free MVS
graphs contain chordal graphs. We show that the forbidden graphs of these classes
are the classic Truemper configurations, or their close relatives. We also study various
graph characteristics like clique number, chromatic number, independence number,
domination number, length of largest cycle and recognition of Hamiltonian cycle, some
of which are polynomial in these classes. This is done using elimination orderings from
Lex BFS and subdivisions.

Keywords: Minimum vertex separators, elimination ordering, Lex BFS, forbidden graph characterization.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). A xy vertex
separator of non-adjacent vertices x and y is a set of vertices S ⊂ V (G), whose
removal disconnects them. S is a minimal xy vertex separator when no proper
subset of it is a xy vertex separator, and let MVS be the graph induced by such
a S on G i.e. MVS = G[S]. Throughout this article we assume Gxy is the MVS
of G for non-adjacent vertices x and y. Also Gx and Gy are the components
containing x and y respectively in G \ Gxy. By MVS is C-free, we mean that the
MVS doesn’t contain C as an induced subgraph. Let C be the set of forbidden
MVS on 2 or 3 vertices, namely, C = {K2, K2, K3, K1 ∪ K2, P3, K3}. We call a
MVS Gxy is C-free if it doesn’t contain C as an induced subgraph. We investigate
∗Email: siddanib@yahoo.co.in
†Corresponding author. Email: umakant.iitkgp@gmail.com
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the classes of graphs whose MVS are C-free for C ∈ C. It should be noted that
the property P of having MVS C-free is hereditary, i.e. every induced subgraph
of any graph satisfying the property P also satisfies P .

Motivation: Chordal graphs are probably the most celebrated family of non-
trivial perfect graphs and hence are widely investigated [1]. Thus many problems
that are NP-Complete in other graphs, turn out to be polynomial, and usually
linear, in chordal graphs. So, apart from the perfect graphs, our aim is to look
into other such families of good graphs. It is well known, due to Dirac [2], that
MVS of chordal graphs are cliques and hence are K2-free. In [3], Sadagopan
proves that a graph is free of cycles with unique chord iff every MVS is an
independent set. In this article we explore other classes of graphs based on
such restrictions on MVS. We also refer to Garey and Johnson [4] for results on
computational complexity, particularly NP Completeness.

A finite list of forbidden induced graphs usually yields a polynomial algorithm
for testing membership in the class. Although for chordal graphs this list is
infinite, namely cycles of length greater than 3, yet we have good recognition
algorithms for it. But finding such characterization for class C ∈ C does not seem
to be obvious. Let us illustrate the simple trick that we used on chordal graphs.
Since MVS of chordal graphs are cliques, the MVS of chordal graphs are K2-free.
The class of forbidden graphs are obtained by placing two vertices x and y on
opposite sides of K2 and drawing paths of arbitrary length from x to y through
their vertices. This gives us the class of forbidden induced subgraphs for chordal
graphs. Minimality requires these paths to be disjoint except at x and y. So for
chordal graphs our class of minimal forbidden graphs are the cycles Cn, n ≥ 4.
Our first step is to find similar results for graphs whose MVS are C-free, for C ∈
C. In [5], Aboulker et al. found forbidden induced subgraphs for graphs where
every induced subgraph has a vertex v whose neighbourhood N(v) is F -free, for
a set of graphs F . Not surprisingly the forbidden induced subgraphs we got,
as well as in [5], are Truemper configurations or their close relatives. Truemper
configurations play a key role in understanding the structures of perfect graphs
[6].

One of the main reasons why analysing chordal graphs is easy is because of the
presence of an elimination ordering. We call an ordering (v1, v2, ..., vn) of vertices
an C-elimination ordering if for i = 1, 2, ..., n, every MVS in G[{v1, v2, ..., vi}] is
C-free. As rightly pointed out in [5], sometimes designing efficient algorithms
requires an elimination ordering along with a good structure in the neighbour-
hood, rather than a global description of the class. Our second step is to find
such C-elimination ordering for C ∈ C. Then using this, and few other transfor-
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mations like subdivisions and proving NP-Completeness by restriction and local
replacement, we find the various graph characteristics of class C ∈ C. For any
graph G, its i-subdivision Gi is formed by inserting i vertices (of degree 2) on
every edge of G.

Another advantage of chordal graphs is that every such graph has a clique
decomposition. Hence by iteratively adding a vertex joined to a clique, we can
construct chordal graphs from a single vertex. These kinds of construction algo-
rithms lead to fast algorithms for computations on graphs in this class. In [7],
Trotignon and Vušković develop such construction techniques for graphs with no
cycle with a unique chord. They give a structural definition for graphs with no
cycles with a unique chord and present polynomial algorithms for recognition (of
order O(nm)), finding clique number (of order O(n+m)) and chromatic number
(of order O(nm)) for such graphs. They also prove that finding a maximal stable
set for a graph in this class is NP-Complete.

In [5], Aboulker et al. provide a general method to prove the existence and
compute efficiently elimination orderings in graphs using Lex BFS and a local
decomposition property.

Results: First we prove a basic theorem on extending the MVS of an induced
subgraph to the MVS of the whole graph. Then we show the connections between
MVS and hereditary properties and minimal forbidden graphs. We also find
minimal forbidden subgraphs for the classes of graphs whose MVS are C-free for
C ∈ {K2, K2, K3, K1 ∪K2, P3, K3}. Then we prove another basic result showing
the structure of neighbourhood of graphs with C-free MVS. Using this result we
prove that finding the clique number problems are in P for almost all C ∈ C.
Then with the help of subdivisions and restriction & local replacement in NP-
Complete problems, we prove that other graph characteristics like finding the
chromatic number, independence number, domination number, length of largest
cycle and recognition of Hamiltonian cycle are NP-Complete for most of the
cases, except ofcourse when they are polynomial. In Table 1, we summarize
these graph characteristics, along with previous known results.

Organization: In Section 2, we state the fundamental theorem of this article:
finding the minimal forbidden graphs for families of graphs with C-free MVS,
for C ∈ C. The proof is given in the Appendix. Then in Section 3, we present
the Lex BFS and another fundamental result showing that the neighbourhood of
each vertex in the elimination ordering is the join of a clique and a MVS of that
class of graphs. Section 4 deals with analysis of various graph characteristics of
such graphs with C-free MVS. Section 5 contains some examples and this article
ends with some open questions in Section 6.
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Table 1: Complexity of Graph Characteristics

MVS P -free ω(G) χ(G) α(G) γ(G) l(G) Ham.

K2 P [1] P [1] P [1] NPC [8] NPC [t] NPC [9]

K2 P [7][t] P [7] NPC [7][t] NPC [t] NPC [t] ?

K3 NPC [t] ? ? ? NPC [t] NPC [t]

K1 ∪K2 P [t] ? NPC [t] NPC [t] NPC [t] NPC [t]

P3 P [t] ? NPC [t] NPC [t] NPC [t] NPC [t]

K3 P [t] NPC [t] NPC [t] NPC [t] NPC [t] NPC [t]

l(G) is the length of largest cycle and [t] represents this paper.

x y
H

G

Gxy

Figure 1

MVS and Hereditary Properties: Before looking into characterization of
graphs on the basis of their MVS, we prove two important results relating the
MVS of induced subgraphs to that of MVS of the graph. These results shall be
repeatedly used in this article.

Theorem 1.1 For an induced subgraph H of G, we can extend its MVS Hxy to
a MVS Gxy of G.

Proof: Refer Figure 1. Clearly V (G)− V (Hx)∪ V (Hy) is a xy vertex separator
(inducing Hxy as a subgraph) of G, so it also induces MVS of G. Also for every
vertex va ∈ V (Hxy) there exists a xy path entirely contained in Hx ∪Hy ∪ {va}
(else Hxy won’t be minimal). So va ∈ V (Gxy). Hence Hxy is a induced subgraph
of Gxy. �

Using Theorem 1.1 we prove the following.

Corollary 1.2 Given any hereditary property P , let G(P ) be the collection of
finite graphs such that every Gxy has property P for every non-adjacent x and
y, then every induced subgraph H of G ∈ G(P ) is also in G(P ) i.e. G(P ) is
hereditary.

Proof: Theorem 1.1 implies Hxy is an induced subgraph of Gxy. Since Gxy has
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hereditary property P for every non-adjacent x and y, Hxy also has the hereditary
property P . So H ∈ G(P ). �

So we have the following hereditary properties:

• MVS is K2-free, i.e. MVS induces a clique. This gives the class of chordal
graphs.

• MVS is K2- free, i.e. MVS induces an independent set. This gives the class
of graphs with no cycle with a unique chord.

• MVS is K3-free. This gives the class of graphs with MVS Gxy such that the
independence number α(Gxy) ≤ 2.

• MVS is K1 ∪K2-free, i.e. MVS induces a complete multipartite graph.

• MVS is P3-free, i.e. MVS induces a collection of cliques.

• MVS is K3-free, i.e. MVS is ∆-free.

From above hereditary properties, it is evident that the classes of graphs with
K3-free MVS, K1 ∪ K2-free MVS and P3-free MVS contain the chordal graphs
(i.e. graphs with K2-free MVS).

The following is a folklore result, due to Hemminger [10].

Lemma 1.3 Given any hereditary property P , there is a set of minimal forbidden
graphs.

Truemper configurations: A theta is a graph consisting of two non-adjacent
vertices a and b and three distinct ab-paths, no two of which intersect other than
at a and b and any two ab paths induce a cycle. A pyramid is graph consisting
of a triangle {b1, b2, b3}, and a vertex a /∈ {bi}, for i = 1, 2, 3, such that a is
connected to bi by a path Pi, atmost one of them have length one, and any
two such paths along with the connecting edge in triangle {b1, b2, b3} induces a
cycle. A prism is a graph consisting of two disjoint triangles {ai} and {bi}, for
i = 1, 2, 3, connected by three distinct ab paths, and any two such paths along
with the connecting edges in each of the triangles {ai} and {bi} induces a cycle.
A wheel consists of an induced cycle C, called the rim, and a vertex x, called the
center, that has atleast three neighbours in C. These four classes of graphs are
known as Truemper configurations [11].

Chudnovsky and Seymour [12] prove that testing whether a graph has an
induced theta is polynomial of order O(n11). Extending this result, they also
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present a polynomial time algorithm, of order O(n10), to detect whether a graph
has an induced pyramid, which was already proved to be polynomial, of or-
der O(n9), by Chudnovsky et al. [13]. Maffray and Trotignon [14] proved NP
Completeness of detection of a prism as an induced subgraph. However, Chud-
novsky and Kapadia [15] present a polynomial algorithm of order O(n35) to detect
whether a graph has an induced prism or theta.

Now we shall define some of the relatives of the truemper configurations that
we shall come across. A 0-wheel is a wheel with atleast two non-consecutive
spokes missing, i.e. a 3-set exists that induces a K3. A 1-theta is a theta with
an extra edge joining interior vertices of two xy paths. A 1-wheel is a wheel
with atleast one spoke missing , i.e. a 3-set exists that induces a K1 ∪K2, and
the degree of the central vertex is atleast four. A 2-theta is a theta with an
extra induced P3 on interior vertex of each of the three xy paths. A 2-pyramid
is a pyramid with an extra induced P3 on interior vertex of each of the three
xy paths. A 2-prism is a prism with an extra induced P3 on interior vertex of
each of the three xy paths. A theta with P4 is a theta with an extra induced P4

between four interior vertices of the three xy paths with two vertices (1st and
4th) in the central path and one each on the other paths. A 2-wheel is a wheel
with the degree of the central vertex atleast four. A 3-theta is a theta with an
extra induced K3 on interior vertex of each of the three xy paths. A 3-pyramid
is a pyramid with an extra induced K3 on interior vertex of each of the three xy
paths. A 3-prism is a prism with an extra induced K3 on interior vertex of each
of the three xy paths. A 1-co-wheel is two wheels joined at a common triangle
with coinciding central vertices. A 2-co-wheel is two wheels joined at a common
triangle with non-coinciding central vertices. These are shown in Figure 5 (theta,
pyramid, prism, 0-wheel), Figure 7 (1-theta, prism, 1-wheel), Figure 9 (2-theta,
2-pyramid, 2-prism, theta with P4, 2-wheel) and Figure 11 (3-theta, 3-pyramid,
3-prism, 1-co-wheel, 2-co-wheel).

2 Minimal Forbidden Graphs

Using the above mentioned configurations, we summarize our results on forbidden
graph characterizations.

Theorem 2.1 For a graph G and every MVS in it,

• If MVS is K2-free, then G is Cn-free for n ≥ 4. (Also follows from Dirac
[2]).
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• If MVS is K2-free, then G is C1
n-free where C1

n is a cycle with unique chord.
(Also follows from Sadagopan [3], also see Trotignon and Vušković [7]).

• If MVS is K3-free, then G is (theta, pyramid, prism, 0-wheel)-free.

• If MVS is K1 ∪K2-free, then G is (1-theta, prism, 1-wheel)-free.

• If MVS is P3-free, then G is (2-theta, 2-pyramid, 2-prism, theta with P4,
2-wheel)-free.

• If MVS is K3-free, then G is (3-theta, 3-pyramid, 3-prism, 1-co-wheel, 2-co-
wheel)-free.

The proof of the above theorem is a bit lengthy, and hence, for sake of clarity,
is given in the Appendix. Now we present some results on Lex BFS introduced
by Rose, Tarjan and Lueker in [16]. However the algorithm given here is taken
from the excellent reference book by Golumbic [1].

3 Lex BFS and Elimination Ordering

Algorithm
begin
1. assign the label ∅ to each vertex
2. select: pick an unnumbered vertex with largest label
3. σ(i)← i // Comment: v is assigned no. i
4. update: for each unnumbered vertex w ∈ Adj(v) do add i to label(w)
end

What Lex BFS does is that it gives an ordering to vertices of the graphs by
assigning them numbers from n to 1, based on the dictionary ordering of the
labels assigned to its numbered neighbours. This gives an hierarchy layering
among the vertices. The vertex who gets number n is in the top most layer 0.
We shall call vertices by the number assigned to them. The next layer contains
all the neighbours of n i.e. n − 1 to n − d, d being the degree of n. The next
layer contains all the neighbourhood of vertices of n− 1 to n− d. Here also the
order is maintained. The neighbourhood of n− 1 gets higher numbers (or equal
in case of common neighbours) than neighbours of other vertices in this layer,
and so on.

One important observation is that every vertex in layer i is adjacent to atleast
one vertex in its upper layer i−1. Apart from that its neighbourhood may contain
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vertices from layers i and i+ 1. However among the neighbourhood, the vertices
in layer i− 1 and some vertices that are already numbered in layer i determine
the number assigned to that vertex.

In order to look for elimination ordering (as in chordal graphs) we need to
look into the neighbourhood of last vertex. Hence, we are interested in the
neighbourhood of vertex 1. Being the last vertex, it belongs to the final layer, and
its neighbourhood are in the last layer and the layer above it. All its neighbours
are numbered greater than 1, and clearly N(1) is a vertex separator partitioning
the graph into atleast two components; one is a singleton set containing 1 and
the other component contains n. We shall now look into the other components.

If there are more than two components, the other components Ci must belong
to the last layer. This is because the vertices in other layers belong to the
component containing n, except ofcourse the neighbours of 1 in the penultimate
layer that belong to the vertex separator.

Something more can be said about these components Ci. Since every vertex
in Ci is connected to atleast one vertex in the penultimate layer, and the vertex
separator disconnects it from the graph, it has to be adjacent only to a subset of
N(1) in the penultimate layer. Also since the vertices of Ci are numbered higher
than 1, their neighbours in the penultimate layer should contain atleast one
vertex with higher number that N(1) in the penultimate layer or have exactly
the same neighbourhood. Since the former is not possible (else Ci would be
connected to n), all vertices of Ci are adjacent to N(1) in the penultimate layer.

Now lets concentrate on N(1). Atleast one of them belongs to the penultimate
layer and rest belong to the last layer. Now let N(1)p represent the neighbour-
hood of 1 in the penultimate layer. Among the rest all vertices should be adjacent
to atleast one vertex in the penultimate layer with higher number than N(1)p

or be adjacent to every vertex in N(1)p. Let N(1)+ represent the neighbours of
1 in the last layer adjacent to atleast one vertex in the penultimate layer with
higher number than any of N(1)p. Let the rest neighbours of 1 be N(1)l which
are all adjacent to each vertex in N(1)p(else they wouldn’t have been numbered
greater than 1). So we have the following:

N(i) = N(1)p +N(1)+ +N(1)l

Now we claim the following:

Lemma 3.1 N(1)p ∪N(1)+ belong to the MVS.
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Proof: Since N(1) is a vertex separator, it contains a MVS. We can’t exclude
any vertex of N(1)p, else 1 and n get connected via that vertex. We have a
similar argument for N(1)+. Among vertices in N(1)l, some may be adjacent
to other higher numbered vertex in the last layer which is connected to n. Let
such set of vertices be denoted by N(1)l+, and the rest of N(1)l that are not
connected to any vertex outside of N(1)l be denoted by N(1)l−. Our MVS is
exactly N(1)p ∪N(1)+ ∪N(1)l+. �

Lemma 3.2 N(1)l− induces a clique.

Proof: Among N(1), N(1)l− get the lowest numbers. Let the highest number
that a vertex in N(1)l− get be i. Now it is easy to see that the next number got
by a vertex in N(1)l− is i − 1. Now this vertex has to be connected to i, else
1 would have got number i − 1. Similarly vertex with number i − 2 should be
adjacent to i and i− 1, and so on. Hence N(1)l− induces a clique. �

Now lets see the structure of N(1), 1 is connected to two components, one is
the MVS (N(1)p ∪N(1)+ ∪N(1)l+), and the other is a clique (N(1)l−). In order
to have a more good structure in the neighbourhood of 1, we need the following
result.

Lemma 3.3 All the vertices of the clique are adjacent to all the vertices of MVS.

Proof: As we have previously said that all vertices of N(1)l, both N(1)l+ and
N(1)l−, are adjacent to all vertices in N(1)p, so every vertex of the clique is
adjacent to all vertices of N(1)p. Now look at vertices of N(1)+, each of them
has to be adjacent to every vertex in N(1)l−, else 1 would have got a higher
number. Similarly for N(1)l+, the same argument holds. So every vertex of the
clique is adjacent to every vertex of MVS. �

Lemma 3.4 The clique can be recognised in polynomial time.

Proof: Arrange N(1) in descending order of the Lex BFS. Now look into neigh-
bours of each vertex in N(1). Those vertices whose every neighbour is in N(1)
form the clique. This is because each of N(1)p, N(1)+ and N(1)l+ have a neigh-
bour out of N(1), only N(1)l− (which is the clique) hasn’t. �

Using the Lex BFS ordering, we use the structure of neighbourhood of vertices,
as got in the above Lemmas 3.1, 3.2 & 3.3 to get the following theorem.
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Theorem 3.5 If a graph G has C-free MVS, then it has a Lex BFS ordering
from n to 1 satisfying, every neighbourhood of vertex i in G \ G[{1, 2, ..., i− 1}],
N(i) = N(i)1 + N(i)2, where N(i)1 is a clique and N(i)2 is the MVS that is
C-free, and the operator + denotes the usual graph join operation.

Given such an ordering it is easy to check whether the neighbourhood contains
a clique, and is adjacent to every vertex of MVS. Also to recognize any of these
classes of graphs, we need to determine whether the MVS of the structure is
C-free. Below are the summary of the structures of MVS of the six cases we
discussed above.

• MVS is K2-free, i.e. MVS induces a clique. This can be checked in polyno-
mial time.

• MVS is K2-free, i.e. MVS induces an independent set. This also can be
checked in polynomial time.

• MVS is K3-free, i.e. for MVS α(Gxy) ≤ 2. So its complement is ∆-free. This
also can be checked in polynomial time.

• MVS is K1 ∪K2-free, i.e. MVS induces a complete multipartite graph. This
also can be checked in polynomial time.

• MVS is P3-free, i.e. MVS induces a collection of cliques. This also can be
checked in polynomial time.

• MVS is K3-free. This also can be checked in polynomial time.

For the classic case of chordal graphs i.e. K2-free MVS, a Lex BFS will give
a sequence from n to 1. As proven above, the neighbourhood should contain a
MVS and a clique, which is adjacent to every vertex of the MVS. However in
this case the MVS is the clique. So in order to check if a graph is chordal or not,
it suffices to check whether the neighbourhood induces a clique.

For graphs with MVS K2-free, Trotignon and Vušković [7] give a polynomial
recognition algorithm of order O(nm). Here we shall use our Lex BFS ordering
to give an alternate polynomial recognition algorithm. We have a sequence from
n to 1. As proven above, the neighbourhood should contain a MVS and a clique,
which is adjacent to every vertex of the MVS. In this case the MVS is an inde-
pendent set. So the vertices of the clique will have the maximum degree. Now
for the remaining vertices in the neighbourhood, check whether all of them are
adjacent to the clique and are independent. This can be done in a polynomial
time.
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Now lets look at the graphs with K1∪K2-free MVS i.e. complete multipartite
graphs. After doing a Lex BFS on such a graph we shall get a sequence from n to
1. Start with the vertex 1 and look at its neighbours which is composed of a MVS
and a clique adjacent to all vertices of the MVS. Please note that the MVS is also
a complete t-partite graph. It is also easy to see that the clique, say on m vertices
and the MVS form a complete (t + m)-partite graph (the clique can be viewed
as a complete m-partite graph). Now remove vertex 1. The rest graph is also a
multipartite graph and we go on repeating this process. So we have a sequence
of vertices whose neighbourhood is a complete multipartite graph. In order to
check whether a graph has K1 ∪ K2-free MVS, we look at the neighbourhood
of the last vertex in the Lex BFS. Take any vertex in this neighbourhood and
look at the non adjacent vertices to this vertex. They should be independent.
Now take another vertex in the neighbourhood of 1 which doesn’t belong to this
partition, and follow these steps. After #partition steps we shall know whether
the neighbours induce a complete multipartite graph. Repeating this for all the
vertices in the ordering will tell us whether the graph has K1 ∪ K2-free MVS.
This can be done in a polynomial time.

Similarly for graphs with K3-free MVS i.e. whose α(Gxy) ≤ 2, we can do a
Lex BFS. The neighbourhood of the vertex 1 is a MVS and a clique, adjacent
to every vertex of the MVS. We take the complement of the graph induced by
neighbourhood of 1 and check whether it is ∆-free. Go on doing this for other
vertices in the ordering. This will tell us whether the graph has K3-free MVS,
and can be done in polynomial time.

For graphs with P3-free MVS, the MVS induce a collection of cliques. So the
vertices of the clique (due to Theorem 3.5) will have the maximum degree. Now
for the remaining vertices in the neighbourhood, check whether all of them are
adjacent to the clique. If so pick a vertex and collect all adjacent vertices not in
the clique. Check whether this induces a clique. Go on doing this till all vertices
are exhausted. This can be done in a polynomial time.

Finally for graphs with K3-free MVS, just check whether neighbourhood of
each vertex in the ordering after recognising the clique is K3-free.

However this doesn’t help in the recognition of the above classes, except
chordal graphs, due to the following arguments.

Considering a generalized converse statement of the Theorem 3.5, we have the
following definition.

Definition: A graph G is said to have the property C∗, if it has an ordering such
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that every vertex i in the ordering has a neighbourhood, in G \ G[{1, 2, ..., i−1}],
which is a graph join between a clique and a MVS that is C-free. Such an ordering
is called as C∗ sequence.

The C∗ sequence is a variant of an ordering defined by Aboulker et al. [5]
known as C elimination ordering (i.e. ordering in G[{v1, v2, ..., vi}] where neigh-
bourhood is C-free). They also have introduced a stronger concept known
as locally C decomposable and have completely characterized graphs for C ∈
{K3, K1 ∪ K2, P3}. When C contains complete graphs, then a complete graph
might not have C elimination ordering. Hence they don’t consider C to be a
complete graph. However, since we are looking into MVS, we consider all C on
2 and 3 vertices.

For class C = K2, our forbidden graphs matches with that in [5]. For classes
C ∈ {K3, K1 ∪ K2}, it can be easily checked that the forbidden graphs in [5],
are subsets of our forbidden graphs. So for C ∈ {K2, K3, K1 ∪K2} our classes of
graphs is a subset of the classes in [5]. So their C elimination ordering can govern
our classes of graphs. However for C = P3, the graph K4 with only edge replaced
by a P3 is a forbidden graph for the corresponding class defined in [5], but its
MVS is P3 free, hence not a forbidden graph for us. Hence the C elimination
ordering defined in [5] cannot govern graphs with P3 free MVS. Hence we need
our elimination ordering.

Clearly the classes of graphs that have C-free MVS belong to this class sat-
isfying C∗ property, by Theorem 3.5. But the following lemma highlights the
drawback of such an approach.

Lemma 3.6 Even if every ordering of vertices gives the C∗ sequence, then the
original graph need not have C-free MVS for C ∈ {K2, K3, K1 ∪K2, P3, K3}.

Proof: We prove the above statement by explicitly giving examples of family
of graphs for each case where every any ordering (particularly Lex BFS) gives
the C∗ sequence, although the MVS of the graph contains C. Figure 2 contains
graphs which contain C in their MVS (C ∈ {K2, K3, K1∪K2, P3, K3}), but every
ordering (particularly Lex BFS) is a C∗ sequence. For each graph a family of
such graphs can be obtained by replacing the bold lines by paths of arbitrary
length. �

In particular, we have the following Corollary and remark.

Corollary 3.7 Even if every Lex BFS gives the C∗ sequence, the original graph
need not have C-free MVS for C ∈ {K2, K3, K1 ∪K2, P3, K3}.
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(a) K2 (b) K3 (c) K1 ∪K2

(d) P3 (e) K3

Figure 2: C∗ sequence not enough for recognition.

Remark: Having such an ordering is not enough for the recognition of the
classes of graphs we consider, except the chordal graphs, however we shall use
this ordering in order to find the clique numbers of some cases in polynomial
time. In case of the chordal graphs we suspect that the symmetry in its minimal
forbidden graphs is the reason that it escapes Lemma 3.6.

4 Graph Characteristics

4.1 Independence Number

Now we shall look into finding the independence number of graphs belonging
to the classes discussed above. It is well known that independence number of
chordal graphs can be found in linear time [1]. However, the following result
proves NP-Completeness for many other cases. And this particular technique is
used repeatedly in this article.

Lemma 4.1 For a hereditary property P, suppose each minimal forbidden graph
has two adjacent vertices of degree ≥ 3, then the determination of independence
number α(G) is NP-Complete for graphs with property P.

Proof: Let G be a graph and P be the hereditary property. Let I(G) be its
independent set. We consider the subdivision G2 of G. For every edge (P2) in G,
we have a P4 in G2. In G2 there aren’t any two adjacent vertices of degree ≥ 3
and therefore it has property P . Let I(G2) be the independent set of G2. We
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claim that α(G2) = mG +α(G), where mG is the number of edges in G. Each P4

must have atleast 1 and atmost 2 independent vertices. If a P4 has just 1 vertex
in I(G2) then one of its end vertices (farther from its independent vertex) should
be adjacent to a vertex in I(G2). Our aim is to find the maximum cardinality of
an independent set. So we shall try to maximize those P4’s which have 2 vertices
in I(G2). We know that for a maximum independent set the number of edges
originating from them is maximum. So #P4’s originating from I(G) in G2 is
also maximum. We take two vertices from these paths in the following manner.
Take all I(G) in I(G2). For each P4 originating from I(G), take the vertex at a
distance 2 from I(G). For the rest P4’s take any interior vertex. So we took all
vertices in I(G) along with a vertex from each P4. So α(G2) = mG+α(G). Since
the family of graphs G2 is contained in family of graphs with property P , by local
replacement, the determination of independence number α(G) is NP-Complete
for graphs with property P . �

So we have the following corollary.

Corollary 4.2 The determination of independence number α(G) is NP-Complete
for graphs with K2-free MVS, K1∪K2-free MVS, P3-free MVS and K3-free MVS.

These results are reflected in Table 1.

4.2 Domination Number

For the class of chordal graphs it is known that the domination number problem
is NP-Complete, due to Booth and Johnson [8]. The following result proves
NP-Completeness for many other cases.

Lemma 4.3 For a hereditary property P, suppose each minimal forbidden graph
has two adjacent vertices of degree ≥ 3, then the determination of domination
number γ(G) is NP-Complete for graphs with property P.

Proof: Let G be a graph and P be the hereditary property. Let S(G) be its
minimum dominating set. We consider the subdivision G3 of G. For every edge
(P2) in G, we have a P5 in G3. In G3 there aren’t any two adjacent vertices
of degree ≥ 3 and therefore it has property P . Let S(G3) be the minimum
dominating set of G3. We claim that γ(G3) = mG + γ(G), where mG is the
number of edges in G. In G3 we have three kinds of P5’s; the P5’s between
vertices of S(G), the P5’s between vertices of V (G)−S(G) and the P5’s between
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a vertex of S(G) and a vertex of V (G) − S(G). If the end vertices of a P5

is dominated by external vertices then the central vertex dominates the other
vertices. If none or only one vertex of P5 is dominated by external vertices,
then we need two dominating vertices. So each P5 contributes atleast one to
γ(G3). Apart from one vertex per P5 we need to take some extra vertices in the
dominating set. Our aim is to minimize this extra vertices. We make use of the
fact that the minimum dominating set of G contains the minimum number of
vertices that dominate all of G.

Amongst the P5’s between vertices of V (G)−S(G), the central vertex belongs
to the minimum dominating set. If central vertex doesn’t belong to the domi-
nating set, then the dominating set will contain two vertices in the P5. Now the
extreme vertices of these P5’s have to be dominated. So the fourth vertex in the
P5’s between a vertex of S(G) and a vertex of V (G)− S(G) i.e. the vertex at a
distance 3 from S(G), will belong to the minimum dominating set. Now S(G)
and its adjacent vertices in these P5’s are to be dominated. So we take S(G)
in S(G3). Now for the left P5’s between vertices of S(G), any of the internal
vertices per P5 can belong to S(G3). So S(G3) contains S(G) and one vertex
per P5. Hence, γ(G3) = mG + γ(G). Since the family of graphs G3 is contained
in family of graphs with property P , by local replacement, the determination of
domination number γ(G) is NP-Complete for graphs with property P . �

So we have the following corollary.

Corollary 4.4 The determination of domination number γ(G) is NP-Complete
for graphs with K2-free MVS, K1∪K2-free MVS, P3-free MVS and K3-free MVS.

It should be noted that G3 is a bipartite graph, hence the following results.

Lemma 4.5 For a hereditary property P, suppose each minimal forbidden graph
has two adjacent vertices of degree ≥ 3, then the determination of domination
number γ(G) is NP-Complete for bipartite graphs with property P.

Corollary 4.6 The determination of domination number γ(G) is NP-Complete
for bipartite graphs with K2-free MVS, K1 ∪ K2-free MVS, P3-free MVS and
K3-free MVS.

These results are reflected in Table 1.
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4.3 Length of Largest Cycle

The following result proves NP-Completeness of the largest cycle problem for
many cases.

Lemma 4.7 For a hereditary property P, suppose each minimal forbidden graph
has two adjacent vertices of degree ≥ 3, then the determination of length of
longest cycle l(G) is NP-Complete for graphs with property P.

Proof: Let G be a graph and P be the hereditary property. Let l(G) be the
length of its largest cycle. We consider the subdivision G1 of G. For every edge
(P2) in G, we have a P3 in G1. In G1 there aren’t any two adjacent vertices
of degree ≥ 3 and therefore it has property P . Let l(G1) be the length of its
largest cycle of G3. We claim that l(G1) = 2l(G). Let the largest cycle in G be
v1v2...vl(G)v1. Then the largest cycle in G1 will be v1u12v2u23...vl(G)ul(G)1v1, where
uij is the new vertex introduced in G1 between vertices vi and vj of G. So its
length is 2l(G). Since the family of graphs G1 is contained in family of graphs
with property P , by local replacement, the determination of length of longest
cycle l(G) is NP-Complete for graphs with property P . �

Later in Corollary 5.2, we shall see that the Hamiltonian cycle problem is
NP-Complete for graphs with K2-free and K3-free MVS, so again by restriction,
the problem of the largest cycle is NP-Complete.

In lieu of the above results we have the following Corollary.

Corollary 4.8 The determination of length of largest cycle γ(G) is NP-Complete
for graphs with K2-free, K2-free MVS, K3-free, K1 ∪K2-free MVS, P3-free MVS
and K3-free MVS.

It should also be noted that G1 is a bipartite graph, hence the following results.

Lemma 4.9 For a hereditary property P, suppose each minimal forbidden graph
has two adjacent vertices of degree ≥ 3, then the determination of length of
longest cycle l(G) is NP-Complete for bipartite graphs with property P.

Corollary 4.10 The determination of length of largest cycle γ(G) is NP-Complete
for bipartite graphs with K2-free MVS, K1∪K2-free MVS, P3-free MVS and K3-
free MVS.
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These results are reflected in Table 1.

4.4 Clique Number

4.4.1 Clique number of graphs with K3-free MVS

The clique number of any graph is the independence number of its complement.
It is known that the problem of finding independence number of ∆-free graphs
is NP-Complete (due to Poljak [17] and restriction). So the problem of finding
clique number of K3-free graphs in also NP-Complete. But what we are inter-
ested in is finding the clique number of graphs with K3-free MVS. But graphs
with K3-free MVS already contain K3-free graphs. Hence, by restriction, clique
number problem is NP-Complete for graphs with K3-free MVS. We also give an
alternative proof.

Lemma 4.11 The clique number problem is NP-Complete even for graphs with
K3-free MVS.

Proof: Given any K3-free graph H, we shall construct a graph G containing
H as a MVS, and whose other MVS are also K3-free. Construction: Take two
vertices x and y, and join them to every vertex of H. So the MVS for x and y
is H which is K3-free. For any two non-adjacent vertices in H, the MVS will
contain x and y along with some more vertices in H. Since x and y are adjacent
to all such vertices, and H is K3-free, no three vertices will induce K3. Hence we
have a polynomial transformation from a K3-free graph to a graph with K3-free
MVS. Hence this problem is also NP-Complete. �

4.4.2 Clique number of graphs with K1 ∪K2-free MVS

We already know that the complete t-partite graphs belong to this class. We
have the following lemma.

Lemma 4.12 The clique number problem is polynomial for the class of graphs
with K1 ∪K2-free MVS.

Proof: We take a Lex BFS of the graph giving us a ordering from 1 to n. We
then take a maximal clique and take the vertex that first appears in the Lex
BFS. Remove all the vertices before that. No vertices of the maximal clique are
removed since they occur later in the ordering. So this clique is still present in
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the neighbourhood of that vertex. Since in a complete t-partite graph all the
cliques are of size t, we can compute the clique sizes of neighbourhood of each
vertex in the Lex BFS ordering. The maximum of these give the clique size.

4.4.3 Clique Number of graphs with K3-free MVS

This section deals with the following theorem.

Theorem 4.13 Clique number ω(G) of a graph with K3-free MVS can be found
in polynomial time.

We need the following lemma to prove the above theorem.

Lemma 4.14 In a graph with K3-free MVS, given any ∆, there is a unique
maximal clique containing this ∆.

Proof: Suppose there are atleast two maximal cliques containing this ∆ and let
G1 and G2 be the component of these cliques excluding the ∆. It is easy to see
that for x ∈ G1 and y ∈ G2, the MVS of these two vertices contains the ∆.
Hence we have a contradiction. So there is a unique maximal clique containing
this ∆. �

Any three vertices in a clique induces a ∆. So we have the following corollary.

Corollary 4.15 In a graph with K3-free MVS, no two maximal cliques have three
vertices in common.

Proof of Theorem 4.13 We present an explicit algorithm to find the clique
number ω(G) of a graph with K3-free MVS.

Algorithm:
1. S = ∅, E = ∅
2. for ∆xixjxk in G where xi, xj, xk /∈ E
3. S = S ∪ {xi, xj, xk}
4. while xl is adjacent to any three elements of S
5. S = S ∪ {xl}
6. CLIQUE = CLIQUE ∪ {S}
7. CLIQUENUMBER = CLIQUENUMBER ∪ {|S|}
8. E = E ∪ S
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9. S = ∅
10. Return maximum(CLIQUENUMBER)

S contains the vertices of each maximal clique in the graph. E is used to
collects all the vertices contained in S in any of the previous iterations so as to
ensure that a maximal clique is got only once, hence making our algorithm more
efficient. In line 2, we take triangle xixjxk so that they don’t belong to E, else
we would get the same maximal clique. In line 3, we add these vertices to S. In
lines 4 and 5, we go on adding those vertices xl to S, which are adjacent to any
three vertices in S. We go on doing this till no such xl exists. S has a ∆, and
after that we add vertices that are adjacent to three vertices of S. Due to Lemma
4.14, all vertices in S form a maximal clique, particularly the unique maximal
clique containing the initial ∆. In lines 6 and 7, we add this maximal clique and
its clique size in CLIQUE (a set of sets containing the vertices of each maximal
cliques) and CLIQUENUMBER (a set containing the clique sizes) respectively.
In line 8, we add the vertices of S to E so as to ensure that we don’t consider
any triangle in this maximal clique in further iterations which ensures that we
don’t get the same maximal clique once again. In line 9, we initialize S back to
∅ for finding the next maximal clique in the graph. After considering all such
∆’s in the graph, we have found out all maximal cliques and their respective
clique sizes. We output the maximum of all clique sizes in line 10. So we have
the clique number of the graph. Hence finding the clique number ω(G) of such
graphs with ∆-free MVS is polynomial. �

These results are reflected in Table 1.

Now, we construct graphs with K3-free MVS having arbitrary clique number.
The following lemma gives the construction.

Lemma 4.16 A graph with K3-free MVS can have arbitrary clique number ω(G).

Proof: We take a K3-free graph and connect it by edge to a arbitrary clique of
size n. So our graph has a clique component and a ∆-free component. Every
MVS is found wrt two non-adjacent vertices x and y. Both of them cannot belong
to the clique component, since they will be adjacent. If both belong to ∆-free
component, their MVS is already ∆-free. Now wlog let x belong to the clique
component and y to ∆-free component. Two cases arise: x is adjacent to the
∆-free component or it is not. In the former case MVS is just a K1, particularly
the vertex of the ∆-free component connected to the Kn; whereas in the latter,
Kn − x will be a vertex separator, and again MVS will be K1, particularly the
vertex of Kn connected to the ∆-free component. The other vertex separators
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will lie in the ∆-free component, hence MVS will also be ∆-free. So for every x
and y, their MVS Gxy is K3-free, and its clique number is arbitrary. �

4.5 Chromatic Number

4.5.1 Chromatic Number of graphs with ∆-free MVS

As discussed previously, it is well known, due to Král et al. [18], that the chro-
matic number problem is NP-Complete for ∆-free graphs. Since ∆-free graphs
is a subset of class of graphs with K3-free MVS, by restriction, we have the
following result.

Lemma 4.17 The chromatic number problem is NP-Complete for graphs with
K3-free MVS.

4.5.2 On the structure of G when Gxy is ∆-free

From Lemma 4.14, we have no two maximal cliques have a ∆ in common i.e.
no two maximal cliques have three vertices in common. So any two intersecting
maximal cliques will have K1 or K2 in common. Let G1, G2, ..., Gn be the
corresponding components of maximal cliques got after removing all the common
K1’s and K2’s, so they too are cliques. Clearly the whole graph G can be covered
by its vertices. We now group the vertices according to the maximal cliques they
form. So G can be covered by the set of maximal cliques, including K1’s and
K2’s. Please note that these K1’s and K2’s are also maximal cliques. Hence G
can be represented by available connections between Gi’s by K1 or K2.

These results are reflected in Table 1.

5 Examples of graphs with C-free MVS

It is known that chordal graphs have MVS K2-free. Infact since the MVS of
chordal graphs are cliques, their MVS also are K3-free, K1 ∪ K2-free and P3-
free. The class of graphs with K2-free MVS are well characterized by Trotignon
and Vušković in [7]. Lets call these graphs Trotignon graphs. It is also easy
to see that the join of such graphs and any independent set will give K3-free
MVS. So now we have a good number of examples for each case of graphs with
MVS C-free. Not only that, by restriction, these help us prove NP-Completeness
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of other characteristics in these classes. Since chordal graphs are contained in
graphs whose MVS are K3-free, K1∪K2-free and P3-free, by restriction, we have
the following theorem.

Theorem 5.1 Any graph characteristic that is NP-Complete for chordal graphs
is NP-Complete for graphs whose MVS are K3-free, K1 ∪K2-free and P3-free.

5.1 Graph Characteristics continued: Hamiltonian Cycle

Since Hamiltonian cycle problem is NP-Complete for chordal graphs, due to
Colbourn and Stewart [9], we have the following theorem.

Corollary 5.2 The Hamiltonian cycle problem is NP-Complete for graphs with
K2-free MVS, K3-free MVS, K1 ∪K2-free MVS and P3-free MVS.

Using this trick we can alternately prove that the determination of domination
number γ(G) is NP-Complete for these cases, yet we have given the alternate
proof for sake of completeness.

Due to Krisnamoorty [19], it is known that Hamiltonian cycle problem is NP-
Complete for bipartite graphs, which are ∆-free. Since ∆-free graphs is a subset
of class of graphs with K3-free MVS, by restriction, we have the following result.

Lemma 5.3 The Hamiltonian cycle problem is NP-Complete for graphs with
K3-free MVS.

These results are reflected in Table 1.

Now drawing a parallel with Aboulker et al. [5], since the classes for C ∈
{K2, K3, K1∪K2} defined here are a subset of graphs of their classes, their poly-
nomial algorithms for graph characteristics, namely clique number, also applies
to ours, whereas for graph characteristics which are NP Complete in our class,
is by restriction, also NP-Complete for their classes. These include the follow-
ing: the determination of independence number and the dominating number is
NP-Complete for C = K1 ∪K2, determination of length of largest cycle and the
Hamiltonian problem is NP-Complete for C ∈ {K2, K3, K1 ∪K2}.
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6 Open Problems

The recognition problem of whether a graph has MVS C-free for C ∈ {K3, K1 ∪
K2, P3, K3} is not known. One of the approaches to find structural characteri-
zation of such classes of graphs using the techniques of Trotignon and Vušković
in [7]. Another alternative is to recognize the forbidden subgraphs present in
it. There exists polynomial algorithms for some of them like theta, pyramid
and theta or prism by Chudnovsky and others [12, 13, 15]. Although it is NP-
Complete to recognise some of the structures, yet since we need to recognise any
one of a set of forbidden minimal graphs, it might make things easier (as in the
recognition of theta or prism is polynomial, although recognising prism is NP-
Complete [15]). However detection algorithms aren’t known for the other kinds
of configurations we saw in Theorem 2.1. Although seems a lot involved, this is
a possible direction for future work. Another, relatively easier, set of problems
would be to resolve the unknown graph characteristics in Table 1, particularly
the determination of chromatic number for the class of graphs with MVS C-free
for C ∈ {K3, K1 ∪ K2, P3}, although we suspect it to be NP-Complete. Refer
Table 1 for the other unknown graph characteristics.
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A Appendix: Minimal Forbidden Graphs [Proof of Theo-

rem 1]

A.0.1 Minimality Transformation

Before starting to find out the minimal forbidden subgraphs, we shall give a
condition called as the minimality transformation. This technique is used to
prove that a given graph is not minimal in terms of forbidden MVS by showing
that by appropriately taking x and y, usually by shifting them to the highlighted
vertices, and then deleting some vertices within the dotted circle, to get a further
smaller graph. Hence, such graphs violate the minimality conditions. We follow
the following conventions: the highlighted (bigger) vertex is the new position
of x, if two vertices are highlighted by same color one is x and other is y; the
vertices inside the dotted circle can be deleted; and the new non-trivial MVS is
highlighted by stars.

Now we shall look into minimal forbidden graph characterization.

A.1 Forbidden Graph Characterization

We consider characterization of some particular class of graphs based on some
small forbidden graphs, which we shall prove whenever it isn’t obvious. Then
we construct minimal forbidden graphs of such graphs whose MVS are those
particular classes. Also if a class of graphs has MVS as either one of the following
cases then its forbidden graph characterization can be found by collecting all the
forbidden graphs of each individual class.

Proof of Theorem 2.1:

A.1.1 K2 free

A complete graph doesn’t contain K2. So a graph with MVS Gxy = Kn has K2-
free MVS. So a minimal forbidden graph will be Cn, for n ≥ 4. This is obtained
by placing x and y on opposite sides of K2 and drawing paths of arbitrary length
from x to y. This is shown in Figure 3.1. Such classes of graphs are well known
as the chordal graphs. Please note that a small dash over the edge represents a
path of arbitrary length (≥ 1). For more details on this characterization please
refer [1].
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Figure 3: MVS with 2 vertices

A.1.2 K2 free

Similarly an independent set is K2 free. So a graph with MVS Gxy = Kn has
K2-free MVS. So a minimal forbidden graph will be as shown in Figure 3.2, which
is obtained, similarly, by placing x and y on opposite sides of K2 and drawing
paths of arbitrary length from x to y. In fact, this cycle with unique chord,
is the only minimal forbidden graph for Gxy = Kn. For more details on this
characterization please refer [7].

Lemma A.1 Cycles with unique chord K2 are the only minimal forbidden graphs
for graphs with MVS as independent sets.

Proof: Suppose the chord isn’t unique, then there exists atleast another chord
ab. This will lie in one side of K2, because if it crosses, K2 ceases to be MVS.
Since ab lies on one side of K2, then we can shift x to a and delete x (as shown
in Figure 1.3); so it ain’t minimal. Hence we need an unique chord.

A.1.3 K3 free

Consider a graph with independence number α(G) ≤ 2. A very natural charac-
terization is that G is ∆-free. So, G is K3 free. So for a graph with MVS Gxy

such that α(Gxy) ≤ 2, implies Gxy doesn’t contain K3. Now we shall find out all
minimal forbidden graphs for such graphs.

The simplest class of minimal forbidden graph with this property is shown in
Figure 4.1, which is a theta. Now we add chords. Other edges that aren’t chords
cannot be added since it violates the minimality condition. We can do this in
two ways: keeping the chord in one side of K3; or using one of the vertices of K3

to form the chord. We cannot add an edge across the K3, else it won’t be the
MVS anymore. So we first add the edge on one side of K3.

Suppose we add one chord forming a cycle Cn such that x ∈ Cn and n > 3, as
shown in Figure 4.2. Here we can do some minimality transformations, depending
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Figure 4: K3 Analysis
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upon which of the highlighted vertex we shift x to. Hence the only minimal
forbidden graph in this case will have a triangle C3, forming a pyramid as shown
in Figure 4.3. No Cn are allowed for n > 3. So we can just add edges forming
triangles. This can be done in thre ways: first form the ∆ in the same side of
K3 as the first ∆ or form ∆’s on the opposite side of K3 (which can be done in
two ways). In the first case the minimality conditions aren’t satisfied, as shown
in Figure 4.4. The second and third cases are shown in Figure 4.5 and 4.6 which
are isomorphic to each other, forming a prism.

Now let’s consider the second case where the edge is added to one of the
vertices of K3. Now wlog let us add an edge to the cental vertex of K3 to the
outer cycle. If we allow the central xy path to have a length greater than 2, we
get Figure 4.7, which is isomorphic to a pyramid. Now we restrict the central xy
path to have a length 2, else the minimal conditions aren’t satisfied (ref Figure
4.8). In such a case we can add any number of chords, maintaining the K3. This
will result in a wheel like structure containing an induced K3 i.e. 0-wheel, as
shown in Figure 4.9.

Now let’s consider new edges involving two vertices of K3. There are two
possibilities worth considering(it can be easily checked that others violate the
minimality conditions): both edges end in the same side of K3, or they end
in different sides. In the first case again there are two possibilities, but the
minimality conditions are violated in both of them (ref. Figure 4.10 and 4.11).
The second case also has two possibilities as shown in Figure 4.12 and 4.13,
ehich after a minimality transformation turn out to be a prism as shown in
Figure 4.14 and 4.15 respectively. (We analyse how this configuration is reached
in appendix.) If we consider new edges involving three vertices of K3, it is easy
to see that Figure 4.10 and 4.11 will be a subgraph, so it violates the minimality
conditions.

Now we try to form hybrid structures by combining cases discussed above.
The only possible structure that can be formed is to include a triangle in a
wheel. However it is easy to see that the structures so formed are isomorphic to
pyramid. This concludes our analysis. So the set of minimal forbidden graphs
are shown in Figure 5.

A.1.4 K1

⋃
K2 free

The class of complete k-partite graph Kn1,n2,.. is K1

⋃
K2 free. So graphs with

MVS as complete k-partite graphs don’t have K1

⋃
K2.
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Figure 5: K3-free Forbidden graphs

Figure 6: K1

⋃
K2 Analysis

Figure 7: K1

⋃
K2-free Forbidden graphs
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The simplest class of minimal forbidden graphs that has K1

⋃
K2-free MVS

i.e. 1-theta is shown in Figure 6.1. Now we add chords. Other paths that aren’t
chords cannot be added since it violates the minimality conditions. This can
be done in two ways: involving the vertices other that that of K1

⋃
K2; and

involving the vertices of K1

⋃
K2. In the first case we don’t allow chords to cross

across K1

⋃
K2 else it ceases to be MVS.

Analysing similar to the last section, we can see that the only minimal graph
in this case will have a triangle C3. Yet on appropriately selecting MVS K1

⋃
K2

as shown in Figure 6.2 to 6.5, we can do a minimality transformation to get
Figure 6.6 and 6.7 respectively which results in a prism. If we try to add another
chord, again as in previous section, we can’t add a ∆ in the same side, also
here we can’t add a ∆ on the opposite side of K1

⋃
K2 (due to unavailability of

vertices on the central xy path).

Now let us consider the case where one of the vertices of K1

⋃
K2 is involved

in the chord. This again can happen in two ways; first involves the K1, and
the other involves K2. So we draw a chord from K1 to one of xy paths. It
goes through a series of minimality transformations as shown in Figure 6.8 to
6.11 to give Figure 6.12. Additional edges cannot be added since it violates the
minimality conditions as shown in Figure 6.13. Now we involve vertices of K2,
wlog it is sufficient to analyse one vertex. After going through a few minimality
transformations (Figure 6.14 and 6.15), we reach the wheel inducing K1

⋃
K2

(Figure 6.16) i.e. 1-wheel. Now we try to form some hybrid structures, but it
can be easily checked that no such structures can be formed. This concludes our
analysis and the set of minimal forbidden graphs are shown in Figure 7.

A.1.5 P3 free

The class of complete k-partite graph Kn1,n2,.. is P3 free. So graphs with MVS as
complete k-partite graphs don’t have P3.

The simplest class of minimal forbidden graphs that has P3-free MVS i.e. 2-
theta is shown in Figure 8.1. Now we add chords. Other paths that aren’t chords
cannot be added since it violates the minimality conditions. This can be done in
two ways: involving the vertices other that that of P3; and involving the vertices
of P3. In the first case we don’t allow chords to cross across P3 else it ceases to
be MVS.

Analysing similar to the last two sections, we can see that the only minimal
graph in this case will have a triangle C3. So we get a 2-pyramid as shown in
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Figure 8: P3 Analysis

Figure 9: P3-free Forbidden graphs
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Figure 8.2. If we try to add another chord, again as in previous sections, we can’t
add a ∆ in the same side, so we add in opposite side resulting in two isomorphic
structures of 2-prisms as shown in Figures 8.3 and 8.4.

Now let us consider the case where one of the vertices of P3 is involved in
the chord. This again can happen in two ways; first involves the end vertices,
and the other involves the interior vertex. So we draw a chord from an end
vertex to the middle xy path going through the interior vertex of P3. It goes
through a series of minimality transformations as shown in Figure 8.5 and 8.6
to give Figure 8.7 which is a theta with P4. Now if we add more such edges we
can do another minimality transformation as shown in Figure 8.8 to get a wheel
(Figure 8.9). Now we draw a chord from the end vertex to the outer xy path
going through the other end vertex of P3. It goes through a series of minimality
transformations as shown in Figure 8.10 and 8.11 to give Figure 8.12, which is
isomorphic to Figure 8.7 hence is a theta with a P4. Now if we add more such
edges we can do another minimality transformation as shown in Figure 8.13 to
8.16 to get a 2-wheel(Figure 8.17) which is obtained when we draw edges from
the interior vertex of P3 after going through structures shown in Figure 8.15 and
8.16.

Now we try to form some hybrid structures, but it can be easily checked that
no such structures can be formed. This concludes our analysis and the set of
minimal forbidden graphs are shown in Figure 9.

A.1.6 K3 free

The simplest class of minimal forbidden graphs that has K3-free MVS i.e. 3-theta
is shown in Figure 10.1. Now we add chords. Other paths that aren’t chords
cannot be added since it violates the minimality conditions. This can be done in
two ways: involving the vertices other that that of K3; and involving the vertices
of K3. In the first case we don’t allow chords to cross across K3 else it ceases to
be MVS.

Analysing similar to the last three sections, we can see that the only minimal
graph in this case will have a triangle C3. So we get a 3-pyramid as shown in
Figure 10.2. If we try to add another chord, again as in previous sections, we
can’t add a ∆ in the same side, so we add in opposite side resulting in two
isomorphic structures i.e. 3-prisms as shown in Figures 10.3 and 10.4.

Now let us consider the case where one of the vertices of K3 is involved in the
chord. Due to symmetry, we can consider one vertex. It goes through a series
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Figure 10: K3 Analysis

Figure 11: K3-free Forbidden graphs
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of minimality transformations as shown in Figure 10.5 and 10.6 and on adding
edges gives a 1-co-wheel as shown in Figure 10.7. Now we consider edges from
two vertices of K3. This can happen in four ways as shown in Figure 10.8 to
10.11, out of which two don’t satisfy the minimality conditions. On adding more
edges we get a 2-co-wheel, as shown in Figure 10.12.

Now we try to form some hybrid structures, but it can be easily checked that
no such structures can be formed. This concludes our analysis and the set of
minimal forbidden graphs are shown in Figure 11. �
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