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Abstract: We obtain two characterizations of the Gaussian distribution on a Hilbert space

from samples of random size.
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1 Introduction

Several characterizations of the univariate and the multivariate normal distribution are known

(cf. Kagan et al. [4], Prakasa Rao [9]). Most of these results involve statistics based on fixed

sample sizes. However there are situations, such as in study of population growth using

branching processes, the size of a generation depends on the size of the previous generation

which itself is random. For the breeding habit and study growth of an organism in one

generation, one needs to study distributions of statistics based on population sizes of the

previous generation which in turn are random. In such cases, it is necessary to characterize the

underlying distribution based on samples of random size. Cook [1] obtained a characterization

of correlated normal random vectors. Kagan and Shalaevski [4]) obtained characterization

of normal distribution by a property of the non-central chi-square distribution. Kotlarski

and Cook [5] extended the results in Cook [1] and Kagan and Shalaevski [4] and obtained

two characterizations of the multivariate normal distribution based on samples of random

size. Prakasa Rao [8] obtained similar results in an unpublished report. In view of the recent

development of methods of functional data analysis, it would be of interest to investigate

whether the results on characterizations of Gaussian distribution obtained in the case of

Euclidean spaces R and Rk continue to hold when the observation space is a function space

such as a Hilbert space. Our aim is to characterize the Gaussian distribution on a real

separable Hilbert space H from samples of random size. Example of such a space H is the

1E-mail: blsprao@gmail.com
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space of square integrable functions f on the real line associated with the norm

||f || = [

∫
R
|f(x)|2dx]1/2.

2 Preliminaries

Let (Ω,F , µ) be a probability space and H be a real separable Hilbert space. Let B be the

Borel-σ-algebra generated by the norm topology on the space H. A mapping X : Ω → H is

said to be a random element taking values in a Hilbert space H if X−1(B) ∈ F for every

B ∈ B. Define

µX(B) = µ(X−1(B)), B ∈ B.

It is easy to check that µX is a probability measure on the measurable space (H,B). Let

M(H) denote the class of all probability measures on (H,B). Let < x, y > denote the inner

product and ||x|| the norm defined on the Hilbert space H. Let ν ∈M(H) be such that∫
H
||x||2ν(dx) <∞.

Then the covariance operator S of ν is the Hermitian operator determined uniquely by the

quadratic form

< Sy, y >=

∫
H
< x, y >2 ν(dx).

A positive definite Hermitian operator S on the Hilbert space H is called an S-operator

if it has finite trace, that is, for some orthonormal basis {ei, i ≥ 1}, of the Hilbert space H,

the sum
∑∞

i=1 < Sei, ei >< ∞. In such a case, the inequality holds for every orthonormal

basis of the Hilbert space H.

Suppose ν is a probability measure in M(H) such that∫
H
||x||ν(dx) <∞.

It can be shown that there exists an element x0 in H such that

< x0, y >=

∫
H
< x, y > ν(dx), y ∈ H.

The element x0 is called the mean of the probability measure ν or the expectation of the

random element X if the distribution of the random element X is ν. We denote the mean or

expectation x0 by the notation ∫
H
x ν(dx).
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For any probability measure ν on the measurable space (H,B), the characteristic func-

tional ν̂(.) is a functional defined on H by the relation

ν̂(y) =

∫
H
ei<x,y>ν(dx), y ∈ H.

The characteristic functional φX(.) of the random element X is given by

φX(y) =

∫
H
ei<x,y>µX(dx), y ∈ H

=

∫
Ω
ei<X(ω),y>µ(dω), y ∈ H.

It is known that there is a one-to-one correspondence between the characteristic functionals

and the probability measures on H. Furthermore the characteristic functional φX of a random

element X satisfies the conditions

φX(0) = 1; |φX(y)| ≤ 1, φX(y) = φX(−y), y ∈ H

where 0 denotes the identity element in H. Moreover the function φX(.) is continuous in the

norm topology . In addition, if X and Y are independent random elements taking values in

h, then X + Y is also a random element taking values in H, and

φX+Y (t) = φX(t)φY (t), t ∈ H.

For proofs of these results, see Parthasarathy [7] or Grenander [2].

A probability measure µX generated by a random element X on a Hilbert space H is said

to be Gaussian if its characteristic functional φX(y) is of the form

φX(y) = exp{i < x0, y > −
1

2
< Sy, y >}

where x0 is a fixed element in H and S is an S-operator on H. It can be shown that x0 is the

mean and the operator S is the covariance operator for Gaussian measure with characteristic

functional φX(y), y ∈ H (cf. Grenander [2], Theorem 6.3.1.). The following result is due to

Grenander [2], p. 141.

Theorem 2.1: (i) Suppose X and Y are two independent random elements taking values

in a Hilbert space H with Gaussian measures with the means mX and mY and covariance

operators SX and SY respectively. Then X+Y is a H-valued random element with Gaussian
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measure with the mean mX + mY and the covariance operator SX + SY . Conversely, if

Z = X + Y is a sum of independent random elements taking values in H with Gaussian

measure, then the random elements X and Y must have Gaussian measures.

(ii) If X is a random element taking values in a Hilbert space H with Gaussian measure µX ,

Then X can be represented as

X = m+
∞∑
i=1

ψiei

where {ei, i ≥ 1} is an orthonormal basis on H and {ψi, i ≥ 1} are independent mean zero

Gaussian random variables with V ar(ψi) = σ2
i , i ≥ 1 and {σ2

i , i ≥ 1} are the eigenvalues of

the operator S. Furthermore the infinite series is convergent (strongly) with probability one.

(iii)If B is a bounded linear operator from H to H and X is a random element with Gaussian

measure with mean m and covariance operator S, then the random element Y = BX has a

Gaussian measure with mean Bm and covariance operator S = BSB∗.

Let Xi, 1 ≤ i ≤ N and Yj , 1 ≤ j ≤ N be two independent samples of independent identi-

cally distributed Hilbert space valued random elements with Xi distributed with probability

measure µX and Yj distributed with with probability measure µY and N be a discrete integer

valued random variable independent of Xi, 1 ≤ i ≤ N and Yj , 1 ≤ j ≤ N. Let

W =
N∑
j=1

[< S1(Xj − a), (Xj − a) > + < S2(Yj − b), (Yj − b) >]

where S1, S2 are known positive definite Hermitian operators with finite traces and a and

b are elements in H. Suppose that E[e−
1
2
W ] = J(a,b) < ∞. We prove that the function

J(a,b) is a measurable function of the function

< S1a,a > + < S2b,b >

if and only if the probability measures µX and µY are Gaussian with mean zero vector. This

result generalizes a result characterizing the multivariate normal distribution by Kotlarski and

Wood [6] (cf. Prakasa Rao [8]). Characterization problems of similar nature for identifiability

in stochastic models are discussed in Prakasa Rao [9].

3 Characterizations

We now state and prove the main results.
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Theorem 3.1: Suppose that the function J(a,b)) = E[e−
1
2
W ] < ∞ for all elements a and

b in H. Then the function J(a,b)) is a measurable function of the function < S1a,a > + <

S2b,b > for a,b ∈ H if and only if the distributions µX and µY are Gaussian with mean

zero vector.

Proof : It is clear that

E[e−
1
2
W ] =

∞∑
n=1

E[e−
1
2
W |N = n]P (N = n)

=
∞∑
n=1

(E[exp(−1

2
< S1(a−Xj), (a−Xj) >]E[exp(−1

2
< S2(b−Yj), (b−Yj) >])nP (N = n).

The last equality follows from the assumption that Xi, 1 ≤ i ≤ N and Yj , 1 ≤ j ≤ N are two

independent samples of independent identically distributed k-dimensional random elements

independent of the random variable N. Let

α(a) = E[exp(−1

2
< S1(a−Xj), (a−Xj) >]

and

β(b) = E[exp(−1

2
< S2(b−Yj), (b−Yj) >].

Then, it follows that,

E[e−
1
2
W ] = Q(α(a)β(b))

where

Q(x) =
∞∑
n=1

xnP (N = n), 0 ≤ x ≤ 1.

Note that the function Q(.) is a strictly increasing continuous function on the interval [0, 1].

Hence its inverse is well defined. Suppose that the function E[e−
1
2
W ] is a measurable function

of the function< S1a,a > + < S2b,b > . Then there exists a measurable real-valued function

ψ(.) such that

ψ(< S1a,a > + < S2b,b >) = Q(α(a)β(b))(3. 1)

or equivalently

α(a)β(b) = γ(< S1a,a > + < S2b,b >)(3. 2)

where γ = Q−1 o ψ for all a,b ∈ Rk. It is easy to see that α(0) 6= 0 and β(0) 6= 0 for a = 0

and b = 0. Substituting a = 0 and b = 0 alternately, we obtain that

γ(< S1a,a >)γ(< S2b,b >) = α(0)β(0)γ(< S1a,a > + < S2b,b >)(3. 3)
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for all a,b ∈ H. Let

θ(t) =
γ(t)

α(0)β(0)
, t ≥ 0.

Note that the function θ(.) is measurable and the equation (3.3) implies that

θ(< S1a,a >)θ(< S2b,b >) = θ(< S1a,a > + < S2b,b >)(3. 4)

for all a,b ∈ H. Hence the function θ(.) is a measurable function such that

θ(t)θ(s) = θ(t+ s)(3. 5)

for all t, s ≥ 0 since S1 and S2 are positive definite operators. Therefore

θ(t) = ec t, t ≥ 0(3. 6)

for some constant c. Hence

γ(t) = ec tα(0)β(0), t ≥ 0.(3. 7)

Therefore, for any element a ∈ H,

γ(< S1a,a >) = ec <S1a,a>β(0)α(0),a ∈ H.(3. 8)

Note that

γ(< S1a,a >) = α(a)β(0),a ∈ H(3. 9)

from (3.2). Combining the equations (3.8) and (3.9) and noting that β(0) 6= 0, it follows that

ec <S1a,a>α(0) = α(a)(3. 10)

=

∫
H

exp[−1

2
< S1(x− a), (x− a >]µX(dx).

The expression on the right side of the equation (3.10) is the convolution of a Gaussian

density with the distribution µX within a constant. Hence the expression on the left side

of the equation (3.10) also has to be a probability density function which implies that the

constant c < 0 with a suitable normalizing constant α(0). The characteristic functions of the

probability densities on both sides of the equation (3.10), then, should satisfy the relation

exp[−1

2
< S1t, t > σ2] = exp[−1

2
< S1t, t >] φX(t), t ∈ H(3. 11)

where φX is the characteristic function of the random element X for some σ2 > 0. Hence

φX(t) = exp[−1

2
< (σ2S1 − S1)t, t >], t ∈ H.(3. 12)
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for some σ2 > 0. Since φX is the characteristic function of the random element X, it follows

that σ2 > 1 and the random vector X has the Gaussian measure with the mean zero and the

covariance operator (σ2S1−S1). Similar arguments prove that the random element Y is also

Gaussian with mean zero and the covariance operator (σ2S2−S2) for some constant σ2 > 1.

The converse part of the result stated in the theorem can be easily verified.

Suppose f and g are probability density functions on H. Let

Z = ΠN
j=1f(a−Xj)g(b−Yj),a,b ∈ H.

Theorem 3.2: Suppose that the function L(a,b) = E[Z] <∞,a,b ∈ H. Then the function

L(a,b) is a measurable function of the function (S1a,a) + (S2b,b) if and only if the distri-

butions µX and µY are Gaussian with mean vectors x0 and y0 and covariance operators SX

and SY respectively and the probability density functions f and g are Gaussian measures

with mean vectors µf and µg and the covariance matrices Sf and Sg respectively with

x0 + µf = y0 + µg = 0

and

SX + Sf = σ2S1;SY + Sg = σ2S2

for some σ2 > 0.

Proof : Let α(a) = E[f(a−X)] and β(b) = E[g(b−Y)],a,b ∈ H. It is easy to check that

E[Z] =
∞∑
n=1

[E(f(a−X))E(g(b−Y))]nP (N = n)(3. 13)

= Q(α(a)β(b)) (say).

Suppose that E(Z) = ψ(< S1a,a >> + < S2b,b >) for some function ψ(.) Then

Q(α(a)β(b)) = ψ(< S1a,a > + < S2b,b) >,a,b ∈ H.

This relation is similar to that in equation (3.1). Arguments similar to those given earlier

show that there exists a constant c such that

α(0) exp[c < S1a,a >] =

∫
H
f(a− x) µX(dx),a ∈ H.(3. 14)
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Note that the expression on the right side of the equation (3.14) is the convolution of the

probability density function f with the distribution function µX . Hence the function on

the left side of the equation (3.14) has to be a probability density function which implies

that c < 0 and α(0) is a suitable normalizing constant for the corresponding Gaussian

density function with the mean zero and the covariance operator σ2S1 for some σ2 > 0. An

application of the Cramer’s theorem for probability measures on a Hilbert space H stated

above (Theorem 2.1) proves that f is a Gaussian probability density function and µX is a

Gaussian probability measure such that

µf + x0 = 0

and

Sf + SX = σ2S1.

Similar arguments show that g and µY are also Gaussian with

µg + y0 = 0

and

Sg + SY = σ2S2.

The converse part of the result in Theorem 3.2 can be established easily.
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