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Although the harmonic mean (HM) is mentioned in textbooks
alongwith the arithmetic mean (AM) and the geometric mean (GM)
as three possible ways of summarizing the information in a set of
observations, its appropriateness in some statistical applications is
not mentioned in textbooks. During the last 10 y a number of
papers were published giving some statistical applications where
HM is appropriate and provides a better performance than AM. In
the present paper some additional applications of HM are consid-
ered. The key result is to find a good approximation to E(Hn), the
expectation of the harmonic mean of n observations from a proba-
bility distribution. In this paper a second-order approximation to
E(Hn) is derived and applied to a number of problems.

harmonic mean | second-order approximation | arithmetic mean |
image denoising | marginal likelihood

The harmonic mean Hn of n observations Z1; . . . ;Zn drawn
from a population is defined by

Hn =
nPn
i=1

1
Zi

: [1]

There have been a number of applications of the harmonic mean
in recent papers. A more general version of Hn with weights
w1; . . . ;wn is

HnðwÞ=
Pn

i=1wiPn
i=1

wi
Zi

: [2]

where w= ðw1; . . . ;wnÞT . The harmonic meanHn is used to provide
the average rate in physics and to measure the price ratio in finance
as well as the program execution rate in computer engineering.
Some statistical applications of the harmonic mean are given in refs.
1-4, among others. HnðwÞ has been used in evaluation of the port-
folio price-to-earnings ratio value (ref. 5, p. 339) and the signal-to-
interference-and-noise ratio (6) among others. The asymptotic
properties of Hn including the asymptotic expansion of EðHnÞ are
investigated in refs. 7 and 8 by either assuming that some moments
of 1=Zi are finite or that Zi s follow the Poisson distribution. It is
noted that recent papers (9, 10) enable one to use saddle-point
approximation to give the asymptotic expansion of EðHnÞ to any
given order of 1=n for some constants c0; c1; c2; . . ., i.e.,

EðHnÞ= c0 +
c1
n
+
c2
n2

+⋯: [3]

However, such methods are not applicable for obtaining the
asymptotic expansion of Hn when the first moment of 1=Zi is
infinite. In ref. 3, Zi s are assumed to follow a uniform distribu-
tion in the interval ð0; 1Þ, i.e., Uð0; 1Þ, motivated by learning
theory. Using the property that the inverse of Hn converges to
the stable law, ref. 3 showed that

EðHnÞ∼ 1
logðnÞ; [4]

where the symbol “∼” means asymptotic equivalence as n → ∞.
Our interest in this paper is to determine the second term in the

asymptotic expansion of EðHnÞ or the general version EðHnðwÞÞ
under more general assumptions on distributions of Zi s. We
show that under mild assumptions,

EðHnÞ∼ 1
logðnÞ

(
1+

c1ffiffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞp

)
; [5]

where the constant c1 will be given. In addition, we use the
approach for obtaining [5] to the case that the first moment of
1=Zi is finite, motivated by evaluation of the marginal likelihood
in ref. 11.

Approximations
We derive the asymptotic approximation of EðHnÞ when the first
moment of 1=Zi is not finite. Let fZig be a sequence of inde-
pendent and identically distributed (i.i.d.) random variables with
possible infinite first moment. Suppose that there exist constants
An and Bn, such that the distribution FnðxÞ of

Xn =
1=Z1 + 1=Z2 +⋯+ 1=Zn

Bn
−An [6]

converges weakly to a nondegenerate distribution FðxÞ such that

FðxÞ= d1 + oð1Þ
jxjα  as x→ −∞; [7]

1−FðxÞ= d2 + oð1Þ
jxjα  as x→∞; [8]

where α, d1, and d2 are constants with 0≤ α< 2, d1; d2 ≥ 0, and
d1 + d2 > 0, respectively. The set of all distributions converging to
FðxÞ is called the domain of attraction of FðxÞ. It is known that only
stable laws with index αð0≤ α< 2Þ have the nonempty domains of
attraction as shown by refs. 12 (chap. 7) and 13 (chap. 2).

Significance

The harmonic mean (HM) filter is better at removing positive
outliers than the arithmetic mean (AM) filter. There are espe-
cially difficult issues when an accurate evaluation of expected
HM is needed such as, for example, in image denoising and
marginal likelihood evaluation. A major challenge is to develop
a higher-order approximation of the expected HM when the
central limit theorem is not applicable. A two-term approxi-
mation of the expected HM is derived in this paper. This ap-
proximation enables us to develop a new filtering procedure to
denoise the noisy image with an improved performance, and
construct a truncated HM estimator with a faster convergence
rate in marginal likelihood evaluation.
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Assume that there is a positive constant d3 which does not
depend on n such that

Xn +An ≥ d3 > 0: [9]

We further assume a uniform rate of convergence of FnðxÞ to
FðxÞ such that

sup
x
jFnðxÞ−FðxÞj= o

�
n−β

�
; [10]

for some positive constant β< 1. Our assumptions are mild. Ref.
14 showed that supxjFnðxÞ−FðxÞj has the rate of ofn−1 log ðnÞg
under some assumptions.
We have the following asymptotic approximation of EðHnÞ:
Theorem 1. Assume that conditions [7]–[10] are satisfied and

An = logðnÞ, Bn = n, α= 1, d1 = 0, and d2 = 1. Then we have the
following first approximation:

EðHnÞ=EðXn + log nÞ−1 = ℓ−2n − ℓ−3n + o
�
ℓ−3n

�
; [11]

where ℓn =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞp

.
The proof is given in Appendix: Proof of Theorem 1. Because

n−β in [10] is smaller than the remaining terms in [11], the
coefficients of both ℓ−2n and ℓ−3n are independent of β in [11].
Remark 1: For an extension of Theorem 1 to the weighted

harmonic mean in [2], we consider the following partial sum:

XnðwÞ=w1=Z1 +w2=Z2 +⋯+wn=Zn

Wn
−An; [12]

where Wn = ðPn
i= 1jwijαÞ1=α. Motivated by ref. 15, we may assume

the following two conditions on the weights wi s:

max
1≤i≤n

 jwij= oðWnÞ; [13]

and the characteristic function of 1=Zi in [6] satisfies that

1− cjtjα + o
�jtjα� as t→ 0: [14]

Under the conditions [13] and [14], ref. 15 showed that the
distribution of XnðwÞ converges to a stable distribution with
characteristic function expð−cjtjαÞ. For example, if Zi s follow
uniform distribution Uð0; 1Þ, the condition [14] is satisfied when
An = log n and α= 1. Following the proof of Theorem 1, it can be
shown that

EfHnðwÞg= ℓ−2n − ℓ−3n + o
�
ℓ−3n

�
; [15]

where ℓn =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞp

. It is noted that the weights in [2] do not
have to be nonnegative, but must satisfy both conditions [9]
and [13].
By Theorem 1, c1 in [5] has the value −1. It is noted that

Theorem 1 holds true if Zi s follow a uniform distribution Uð0; 1Þ.
A higher-order approximation may be similarly obtained but

extra conditions on FnðxÞ in [7] and [8] may be needed. In view of
the proof of Theorem 2.1 given in Appendix: Proof of Theorem 1,
the higher-order term should be ℓ−4n logðℓnÞ. Because it is difficult
to obtain the coefficient of this term theoretically, it may be
constructed empirically. As a demonstration, we consider the
case where Zi s follow a uniform distribution Uð0; 1Þ. We per-
form Monte Carlo simulation with 1,000,000 replications of n
independent observations from standard uniform distribution
Uð0; 1Þ for different values of n= 10; 15; 20; . . . ; 200. The co-
efficient of ℓ−4n logðℓnÞ is estimated to be 0.5673 by fitting the
simulated data to the following model by least squares:

logðnÞHn − 1+
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

logðnÞp = β
log½logðnÞ�
logðnÞ :

Thus, we obtain the following approximation:

EðHnÞ∼ ℓ−2n − ℓ−3n + 0:5673 logðlogðnÞÞℓ−4n : [16]

As in ref. 3, suppose that Zi s follow a uniform distribution
Uð0; 1Þ. The distribution of Yi = 1=Zi is easily seen to be
given by

PðY ≤ tÞ= ð1− 1=tÞIðt≥ 1Þ;

where Ið · Þ is an indicator function. It is well known that the
mean of Yi is infinite but EYr

i <∞ for r< 1. By considering the
limit stable distribution with index α= 1 of the distribution of
Xn for An = logðnÞ and Bn = n, ref. 3 obtained the result [4],
which is

Ef½logðnÞ�Hng∼ 1: [17]

According to our Theorem 1 and the approximation [16],

Ef½logðnÞ�Hng∼ 1−
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

logðnÞp ; [18]

Ef½logðnÞ�Hng∼ 1−
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

logðnÞp +
0:5673 log½logðnÞ�

logðnÞ : [19]

Fig. 1 displays the approximations given in [17]–[19] compared
with the sample mean of 1,000,000 replications of n independent
observations from the uniform distribution Uð0; 1Þ that serves as a
proxy for the exact value of EðHnÞ. Here n takes values 10; 15;
20; . . ., and 200. From Fig. 1, it can be seen that the approxi-
mation [18] is better than the approximation [17]. Although the
approximation [19] is purely empirical, this empirical exercise
basically achieves the desired result as shown in Fig. 1; it clearly
gives much better approximation of Ef½logðnÞ�Hng than its other
two counterparts.
We now consider the case that α> 1. In this case, Bn = n1=α and

An =Eð1=Z1Þn1−1=α. Thus, we have

Hn =
n1−1=α

Xn + n1−1=αEð1=Z1Þ: [20]

In light of the proof of Theorem 1, we have the following asymp-
totic approximation of EðHnÞ:
Theorem 2. Assume that conditions in [7]–[10] are satisfied and

An =Eð1=Z1Þn1−1=α, Bn = n1=α, α> 1, d1 = 0, and d2 = 1; then we
have the following approximation:

EðHnÞ= ℓ−2n + ℓ−3n + o
�
ℓ−3n

�
; [21]

where ℓn =
ffiffiffiffiffiffi
An

p
.

Remark 2: A similar result as in Theorem 2 can be obtained for
the weighted harmonic mean in [2] by assuming that conditions [13]
and [14] are satisfied with α> 1 and An =Eð1=Z1Þ

Pn
i=1wi=Wn. It

can be shown that

EðHnðwÞ=
�
ℓ−2n + ℓ−3n + o

�
ℓ−3n

��Xn
i=1

wi=Wn; [22]

where ℓn =
ffiffiffiffiffiffi
An

p
.
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Some Applications
We present two applications which involve the use of the ap-
proximation of EðHnÞ.
Image Denoising. Image denoising is very important in image
processing. There are many methods for image denoising in the
literature of image process. We are interested in the local filters
such as the arithmetic and harmonic mean filters that have been
used in image denoising. The harmonic mean filter is better at
removing positive outliers and preserving edge features than the
arithmetic mean filter. However, both of them fail when the
image is contaminated by a uniform noise. Comparing the dif-
ference between the two means on different segments, we use
the ratio of the harmonic mean and the arithmetic mean (de-
fined in [23]) as a local filter and select the corresponding
threshold of the ratio using the improved approximation [16]
plus a saddle-point approximation. This application shows how
the local filter can improve the performance of image denoising.
The details are given below.

For demonstration, we consider a test image with dimension
250 × 250 (Fig. 2A) including disk, hand, human body, ring,
sunflower, and triangle as shown in figure 2 of ref. 16. We con-
taminate the image with uniform noise, which is displayed in Fig.
2B. The usual harmonic mean filter method in image denoising
is to replace the value of each pixel with the harmonic mean
of values of the pixels in a surrounding region. We consider
a square containing 9 pixels for each pixel such that this pixel is
located at the center. Here the variable Zi represents the value of
the pixel taking values 0 (black), 1/255,. . .,255/255 (white) in this
256 grayscale image and the sample size is 9. For the edge of an
image with dimension 250 × 250 such as the first or last row and
column, where the pixels are not surrounded by a square, we
copy them to the neighbor areas in the original image and the
new image becomes 252 × 252. Note that this handling is only for
convenience of filtering and the added pixels will not be ana-
lyzed. From Fig. 2 C and D, it can be seen that even though the
harmonic mean filter outperforms the arithmetic mean filter,
both arithmetic mean filter and the harmonic mean filter fail to
denoise the noisy image given in Fig. 2B. However, we can first

Fig. 1. Comparisons of three approximations of Ef½logðnÞ�Hng with respect to the sample mean (denoted by M) of ½logðnÞ�Hn with 1,000,000 replications of
n independent observations from Uð0,1Þ for n= 10, 15, 20,  . . . , 200. (i) “L-M” denotes the approximations of Ef½logðnÞ�Hng by [17] lessM. (ii) “F-M” stands for
the approximations of Ef½logðnÞ�Hng by [18] less M. (iii) “S-M” represents the approximations of Ef½logðnÞ�Hng by [19] less M.

Fig. 2. (A) Initial unnoisy image. (B) Image that is noised by adding Uð0,1Þ noise to each pixel value of the image A. (C) Image obtained by denoising the noisy
image B using the arithmetic mean filter. (D) Image obtained denoising the noisy image B using the harmonic mean filter. (E) The arithmetic mean filtered
image of f~Zi,jg (see [23]). (F) The harmonic mean filtered image of f~Zi,jg.
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use the ratio of the harmonic mean and the arithmetic mean
jointly with a threshold θ to transform the pixel Zi;j at the pixel
location ði; jÞ as follows:

~Zi; j =
�
1; if  Hi; j

�Ai; j ≥ θ;
0; otherwise;

[23]

where Hi;j and Ai;j are, respectively, the harmonic mean and the
arithmetic mean of 9 pixels centering at Zi;j. We then apply the
arithmetic or harmonic mean filter to the pixels f~Zi;jg to denoise
the image of pixels f~Zi;jg. By Fig. 2 E and F, it can be seen that
both images look much better than the images in Fig. 2 C and D.
The image in Fig. 2F (by the harmonic mean filter) looks almost
the same as the initial unnoisy image.
We note that only when using the ratio of the harmonic mean

and the arithmetic mean, we assign 1 or 0 according to a threshold
θ in [23], which is determined by the asymptotic behavior of the
ratio of their expected values. How to select the threshold θ is
important in practice. To demonstrate how to select θ, we con-
sider two cases of uniform distributions with sample size n: (i)
Zi ∼Uð0; 1Þ; (ii) Zi ∼Uð0:2; 0:8Þ. Let Hn and An be, respectively,
the harmonic mean and the arithmetic mean of this sample. An

approximation to Hn=An would be the ratio of their means,
EðHnÞ=EðAnÞ as in ref. 9. For case (i), EðHnÞ can be approxi-
mated by [16], an improved approximation compared with the
result of Theorem 1. For case (ii), 1=Zi;j has moment of any order.
Hence the saddle-point approximation [3.12] in ref. 10 can be
applied, and EðHnÞ can thus be approximated by the three terms
in that expansion. Fig. 3 displays the approximations of ratios of
EðHnÞ=EðAnÞ with n= 5; 6; . . . ; 20 for both cases. It can be seen
that the approximation for case (ii) is larger than the one for case
(i). By this figure, a practical recommendation of the threshold θ
may be 0.85, which has been used for obtaining images displayed
in Fig. 2 E and F.

Evaluating Marginal Likelihood. It is of importance to calculate the
marginal likelihood in the process of likelihood maximization.
Let πðθjxÞ= f ðxjθÞπ0ðθÞ=fmðxÞ be the posterior density for prior
π0ðθÞ, which implies that ½fmðxÞ�−1 =Eπf½f ðxjθÞ�−1g. Ref. 11 pro-
posed the harmonic mean estimator for the marginal likelihood
fmðxÞ by letting Zi = f ðxjθiÞ in [1], where θi s are i.i.d. draws from
the posterior distribution. Ref. 11 noted that 1=Zi can have
infinite variance, in which case the central limit theorem is not
applicable to the partial sums. Later, ref. 17 showed that in
typical applications ½f ðxjθiÞ�−1 may lie in the domain of attraction

Fig. 3. Ratios EðHnÞ=EðAnÞwith n= 5,6, . . . ,20 for both cases. “R1” denotes the ratio for case (i ), whereas “R2” stands for the ratio for case (ii ). The dotted
line is 0.85.

Fig. 4. Comparison of four approximations of the marginal likelihood with n= 10,20,30, . . . ,300. (i) “M” denotes the sample mean of Hn in [1] with 100,000
replications of n independent observations from the posterior distribution. (ii) “T” stands for the sample mean of ~Hn in [24] (δ= 1:5 is used) with 100,000
replications of n independent observations from the posterior distribution. (iii ) “L” represents the sample mean of fðXÞ in [25]. (iv) “F” denotes the sample
mean of fðXÞ+ f3=2ðXÞ=nð1−1=αÞ=2 in [25].
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of a one-sided α-stable law with index α∈ ð1; 2�. If the sample
information exceeds the prior information in an application, the
limit law for a harmonic mean estimator is stable with index α
close to 1, and the convergence is very slow at rate n1−α

−1
. In the

following we demonstrate via one of their examples that if
f1=Zig are properly right truncated, a good approximation can
be constructed so that it converges to the expected harmonic
mean of the right truncated f1=Zig, which converges to the
marginal likelihood.
Suppose we want to evaluate the marginal likelihood f ðXÞ

based on X1; . . . ;Xr independently normally distributed Nðθ; 1Þ
variables with mean θ and variance 1 for a sample fXig of size
r= 10 with sample mean X . Set the prior distribution θ∼Nð0; 1Þ.
The exact marginal likelihood for r= 10 is available analytically,

f ðXÞ= ð2:2πÞ−1=2e−X2
=2:2. Our aim is to estimate the marginal

likelihood f ðXÞ, where PðX = 0Þ= 0. The harmonic mean esti-
mate of the marginal likelihood is Hn = n=½Pn

i=11=Zi�, where
1=Zi =

ffiffiffiffiffiffiffiffi
π=5

p
e5ðθi −XÞ2 for independent and identical draws θi

from the posterior distribution Nð10X=11; 1=11Þ. Ref. 17 showed
that the convergence rate of Hn to the marginal likelihood f ðxÞ is
slow because of α= 1:1, and the harmonic mean estimator
behaves badly (Fig. 4). As described above, in light of the trun-
cation method used in refs. 18 and 19, we consider the right
truncated variable 1=ZiIð1=Zi < nδÞ, where Ið · Þ is an indicator
function and δ is a positive constant. Let

~Hn =
nPn

i=1½1=ZiIð1=Zi < nδÞ�: [24]

By Theorem 2.2, it follows that

EðHnÞ∼E
�
~Hn

�
∼ f

�
X
�
+ f 3=2

�
X
��

nð1−1=αÞ=2: [25]

As displayed in Fig. 4, the convergence rate of Hn is very
slow as described in ref. 17. The main reason is that the value
of α is close to 1. From Fig. 4, it can be seen that ~Hn given in
[24] has a faster convergence rate to the two-term approxi-
mation in [25]. It is noted that this two-term approximation
converges to the marginal likelihood f ðXÞ. Thus, ~Hn may be used
as its approximation.
Similar results are obtained for different values of δ, although

rate increases with less accuracy or decreases when δ is larger or
smaller than 1.5, e.g., δ= 2 or δ= 1.

Appendix: Proof of Theorem 1
First we prove the case α= 1, which implies that An = logðnÞ,
Bn = n in [6], and the distribution of Xn converges to the stable
distribution FðxÞ with index α= 1 satisfying [7] and [8] where
d1 = 0 and d2 = 1. Denote ℓn =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞp

.

EðHnÞ=
Z−ℓn
−∞

1
x+ logðnÞ dFnðxÞ+

Zℓn
−ℓn

1
x+ logðnÞ dFnðxÞ

+
Z∞
ℓn

1
x+ logðnÞ dFnðxÞ

= I1n + I2n + I3n:

Integrating by parts, we have

I1n =
Fnð−ℓnÞ

−ℓn + logðnÞ+
Z−ℓn
−∞

FnðxÞ
fx+ logðnÞg2 dx= I1n;1 + I1n;2:

By [7] and [10], I1n;1 = oðℓ−3n Þ. We now show that I1n;2 = oðℓ−3n Þ.
By [9]

I1n;2 =
Zℓ2n=2
d3

Fnðx− logðnÞÞ
x2

dx+
Z−ℓn

−ℓ2n=2

FnðxÞ
fx+ logðnÞg2 dx

= I1n;2;1 + I1n;2;2:

Because I1n;2;1 ≤Fnð−logðnÞ=2Þ→ 0, by applying l’Hôpital’s rule,

lim
n→∞

I1n;2;1
1=log2ðnÞ= lim

n→∞
− logðnÞFnð−logðnÞ=2Þ= oð1Þ;

then I1n;2;1 = oðℓ−4n Þ. For the other part, I1n;2;2 ≤Fnð−ℓnÞO
ðlog−1ðnÞÞ= oðℓ−3n Þ. So, I1n = oðℓ−3n Þ.
Using Taylor expansion, we have

I2n =
1

logðnÞ
Zℓn
−ℓn

dFnðxÞ+ 1
logðnÞ

Zℓn
−ℓn

−x
logðnÞ dFnðxÞ

+
1

logðnÞ
Zℓn
−ℓn

O
	

1
logðnÞ



dFnðxÞ

= I2n;1 + I2n;2 + o
�
ℓ−4n

�
:

By [8] and [10]

I2n;1 =
FnðℓnÞ−Fnð−ℓnÞ

logðnÞ =
1− f1−FnðℓnÞg−Fnð−ℓnÞ

logðnÞ

=
1− ℓ−1n + o

�
ℓ−1n

�
logðnÞ ;

I2n;2 =
−ℓnFnðℓnÞ− ℓnFnð−ℓnÞ

log2ðnÞ +
Zℓn
−ℓn

FðxÞ
log2ðnÞ dx;

=
−ℓ−1n
logðnÞ+

Zℓn
−ℓn

FðxÞ
log2ðnÞ dx+ o

�
ℓ−4n

�

=
−ℓ−1n
logðnÞ+ o

�
ℓ−4n

�
:

By applying l’Hôpital’s rule, we obtain

lim
n→∞

Z ℓn

−ℓn

FðxÞ
logðnÞ dx
ℓ−1n

= lim
n→∞

Z ℓ−1n

−ℓ−1n
Fðt logðnÞÞdt

ℓ−1n
= 1;

which implies that
R ℓn
−ℓn ½FðxÞ=logðnÞ�dx= ℓ−1n + oðℓ−1n Þ, and hence

I2n;2 = ½1=logðnÞ�− 2ℓ−3n + oðℓ−3n Þ:
Because

R∞
ℓn

dx=ðx2ðx+ logðnÞÞÞ= ℓ−3n − ℓ−4n logð1+ ℓnÞ, we have
I3n = ℓ−3n + oðℓ−3n Þ by [8] and [10]. In sum, we have

EðHnÞ= ℓ−2n − ℓ−3n + o
�
ℓ−3n

�
:
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