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Abstract: We propose to discuss at length the problem of placement of one con-

trollable covariate in the context of an experiment involving several ’treatments’.

This we do while extracting maximum information on the [unknown] parameter

attached to the covariate’s values in the mean model for the observations. The ex-

perimental set-up is a bit different and this calls for an interesting non-trivial study

on optimality in the context of a single-covariate linear regression model.

Key Words and Phrases: Treatment allocation experiments, models with co-

variates, optimal placement of covariate values, optimal allocations

1. Introduction

There are two parallel developments in the construction, analysis and optimal-

ity of varietal designs. One of these is associated with the Analysis of Variance

(ANOVA) set-up and in particular, to block design set-up. The pioneering work is

due to Bose and his co-authors on the construction and analysis of Balanced Incom-

plete Block Designs [BIBDs] and other families of designs. Afterwards, many authors

contributed in this area. In this connection one may refer to Raghavarao (1971) for

detailed references on initial development towards constructions of designs.

The optimality problems have been formulated in various ANOVA models arising

in experimental designs. Kiefer (1958, 1959, 1975) sets the foundation and the direc-

tion of research in this field. Optimality has been studied in various design settings

using different optimality criteria by many authors viz. Shah (1960), Sinha (1970),
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Eceleston and Hedeyat (1974), Cheng (1978), Bradley and Yeh (1980), Bechhofer

and Tamhane (1981), Jacroux (1983), Yeh (1986, 1988), Majumdar (1992, 1996).

For an exhaustive review of the work done in the area prior to 90’s, one is to referred

to the monograph by Shah and Sinha (1989). The other development is associated

with the analysis and optimality of regression designs where the response depends on

the levels of a number of controllable quantitative factors, called covariates. It was

started long back with the work of Simth (1918) who obtained D-optimal design for

a polynomial regression model. Little development occurred until 1950’s when the

subject was taken up by various authors including Elfving (1952, 1959), Chernoff

(1953), de la Garza (1954) and Guest (1958). The pioneering work of Kiefer (1958,

1959, 1975) is attributed to having provided the basic mathematical groundwork

for optimal design theory and it unified the previous works. The other contribu-

tions in this area include Hoel (1958, 1965), Karlin and Studden (1966), Whittle

(1973), Pukelsheim (1980) to name a few. Excellent text books are available in this

area viz. Fedorov (1972), Silvey (1980) and Pukelsheim (1993). A relatively recent

monograph on this topic is by Liski et al (2002).

In the analysis of covariance models where both qualitative and quantitative

factors are present, the problem of inference on varietal contrasts corresponding

to qualitative factors were studied by Harville (1975), Wu (1981) and Nachtsheim

(1989). The problem of determining optimum designs for the estimation of regression

parameters corresponding to controllable covariates was first considered by Lopes

Troya (1982a, 1982b). She restricted investigations in the set-up of Completely

Randomized Designs (CRDs). Das et al (2003) extended it to the block design set-

up viz. Randomised Block Designs (RBDs) and some series of Balanced Incomplete

Block Designs (BIBDs) and constructed Optimum Covariate Designs (OCDs) for

optimal and simultaneous estimation of covariates’ parameters.

The literature on optimum designs is so vast and is developing so fast in different

directions that it would be impossible to cover the area comprehensibly in such a

short article. In the above we have tried to cite only those references which have
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direct link with one or other aspect of the problem to be considered here.

In this paper, an attempt has been made to construct OCDs for the estimation of

covariate parameter in a specific experimental design set-up. The model formulation

closely follows the usual covariates model as in Lopes Troya and others. But, it is

not quite the same. We will consider two formulations of the specific experimental

set-up [and, consequently, of the underlying allocation design]. In both the cases,

we will search for optimal design(s) for most efficient estimation of the covariate

parameter.

2. Formulation I

There is a non-stochastic feature, quantified as X, attached to every experimental

unit in a finite population of n experimental units [eu’s]. Assume X lies in the closed

interval [−1, 1] and that there are altogether t[> 1] distinct values of X covering all

the n units according to the following scheme :

[(xi, fi); 1 ≤ i ≤ t;
∑
i

fi = n;−1 ≤ x1 < . . . < xt ≤ 1]

There are v experimental ’treatments’ to be attached, one to each of these eu’s and

with τj as the effect of the jth treatment; j = 1, 2, . . . , v. The following Incidence

Matrix describes the layout of the design:

X − values Treatment Allocations Totals

x1 f11 f12 · · · f1j · · · f1v f1

x2 f21 f22 · · · f2j · · · f2v f2

x3 f31 f32 · · · f3j · · · f3v f3

· · · · · · · · · · · · · · · · · · · · · · · ·
xi fi1 fi2 · · · fij · · · fiv fi

· · · · · · · · · · · · · · · · · · f1v · · ·
xt ft1 ft2 · · · ftj · · · ftv ft

Totals r1 r2 · · · rj · · · rv n
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Clearly, F = ((fij)) is the treatment allocation matrix with fij ≥ 0 and it is ar-

bitrary subject to the pre-assigned row totals fi’s and with arbitrary column totals

rj’s except that each rj > 0. We contemplate a fixed effects additive model given by :

Yiju = µ+ βxi + τj + eiju

whenever fij > 0, for u = 1, 2, . . . , fij; 1 ≤ j ≤ v; 1 ≤ i ≤ t. Usual assumptions

on the error distributions apply. The given design parameters are n and v. The

quantities to be ascertained are :

(i) t > 1; (ii) − 1 ≤ x1 < x2 < . . . < xt ≤ 1; (iii) f ′is,

and hence ((fij))’s and rj’s such that information on β parameter is maximized,

subject to estimability of the τ -contrasts.

Joint Information Matrix for τ -vector and β-parameter for the above design lay-

out is given by



r1 0 0 · · · 0
∑

i xifi1 = S1, say

0 r2 0 · · · 0
∑

i xifi2 = S2, say

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · rv

∑
i xifiv = Sv, say

S1 S2 S3 · · · Sv ∑
i x

2
ifi = SS, say



Note that
∑∑

ij xifij =
∑

i xifi =
∑

j Sj;Sj =
∑

i xifij.

Therefore, I(β) = SS − ∑
j S

2
j /rj;SS =

∑∑
ij x

2
ifij =

∑
i x

2
ifi.

Our purpose is to maximize I(β) for variations in (t, xi, fi, rj)’s, finally leading

to ((fij)) matrix. This formulation is quite easy to sort out.

We re-write I(β) as
∑

j[
∑

i x
2
ifij − S2

j /rj] =
∑

j[Qj], say.
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Lemma 1 For fixed rj, Qj ≤ rj − I(odd)/rj where I(odd) = 1 if rj is odd; = 0 if rj

is even.

Proof. Easy since −1 ≤ xi ≤ 1 for each i.

Therefore, I(β) =
∑

j Qj ≤ n− ∑
j[I(odd)/rj] ≤ n.

Henceforth, we assume n to be even and choose rj’s also to be even integers so

that I(β) may attain the upper bound n.

In order to attain the bound, we set k = 2, x1 = −1 and x2 = +1 and further,

each rj as an even integer. One choice is : n = 2b = 2(v − 1) + 2(b − v + 1); r1 =

. . . = r(v−1) = 2; rv = 2(b− v + 1).

However, as is well known, this allocation design will stay away from a treatment-

optimal design which calls for equal or nearly equal treatment replications. Hence,

we consider the representation n = vr + s where 0 < s < v. In that case, the

treatment allocations are : r (with replication (v − s)) and r + 1 (with replication

s). At this stage, maximization rests on whether r is odd or even. It follows that

I(β) = n− (v− s)I(r odd)/r− sI(r even)/(r+ 1). For r = 2q, I(β) = n− s/(r+ 1)

while n = 2qv + s and for r = 2q + 1, I(β) = n− (v − s)/r while n = v(2q + 1) + s.

Further, all treatment contrasts are estimable. With the formulation given above,

β-parameter is estimated with maximum precision for the above allocations, though

there are many choices of the underlying designs.

3. Formulation II

We now confine to a situation wherein the observations are ’generated in pairs’ -

based on pairs of distinct treatments chosen from the set of all v treatments. Thus,

as before, we have t > 1 distinct choices of x-values inside [−1,+1] and for each xi,
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there are pairs of treatments chosen and utilized to produce pairs of observations.

We assume that in the process we generate all b = vc2 pairs of observations so that

n = 2× (vc2) = v(v−1). Naturally, the choice of a design corresponds to a partition

of b pairs into t classes. Note that this formulation trivially leads to estimability of

all treatment effects contrasts. Our purpose is to characterize an optimal design for

most efficient estimation of the β-parameter underlying the same model as stipulated

above.

It may be noted that this formulation is a bit different from usual linear re-

gression set-up involving a number of treatments. Herein we are contemplating a

situation involving a production process. Every run of the experiment using any

covariate value utilizes enough input material to accommodate two distinct treat-

ments which constitute a block, so to say. An immediate generalization would call

for accommodating triplets of treatments and so on. We will discuss this aspect

later.

We start with a very general design specification, with ki treatment pairs gener-

ated from the ith block; i = 1, 2, , ., t)

Table 1

Blocks x− values Treatment Pairs Treatment Replications Total

1 x1 [{1ip, 1iq}; 1 <= p < q <= v; ] f11 f12 · · · f1v 2k1

2 x2 [{2ip, 2iq}; 1 <= p < q <= v; ] f21 f22 · · · f2v 2k2

· · · · · · · · · · · · · · ·
t xt [{tip, tiq}; 1 <= p < q <= v; ] ft1 ft2 · · · ftv 2kt

In the above, it is understood that all allocations [of pairs of treatments] within

and across different blocks are distinct. Naturally, the above allocation parameters

satisfy :

(i)
∑
j

fij = 2ki; (ii)
∑
i

ki = b.

Further, we assume, without loss, −1 ≤ x1 < x2 < .. < xt ≤ 1. Define F as the
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block × treatment incidence matrix as indicated above. That is, F = ((fij)); 1 ≤
i ≤ t; 1 ≤ j ≤ v.

It follows that

I(β) = x′Qx/(v − 1)

where x =(x1, x2, . . . , xt)
′

and

Qii = 2(v − 1)ki −
∑

j f
2
ij;Qii′ = −∑

j fijfi′j.

In other words,

Q = 2(v − 1)Diag.(ki)− FF ′

The ’decision variables’ are : t[> 1], distinct x-values, k-values subject to (ii) and

elements of the matrix F subject to (i) above. The problem is that of maximization

of I(β). Note that the treatment pairs can be listed according to the dictionary

style, viz., [(1, 2), . . . , (1, v); (2, 3), . . . , (2, v); . . . ; (v − 1, v)]. For any given specifica-

tion of the decision variables listed above, starting with the vector x of order t× 1,

let us naturally extend it to a vector x∗ of order b × 1, by repeating xi in exactly

ki positions as per the specification of the treatment pairs in the above allocation

matrix and the dictionary style representation. Note that (ii) ensures
∑

i ki = b.

Further to this, it also follows that x′Diag.(ki)x = x∗
′
x∗. Likewise, let us ’convert’

the F -matrix of order t× v to an ’Incidence’ matrix N ′ of order b× v in an obvious

manner so that F ′x = Nx∗ is a vector of order v × 1.

With these two suggested conversions, I(β) = x∗
′
[2(v−1)I−N ′N ]x∗ where x∗ is

a vector of b components (x∗1, x
∗
2, . . . , x

∗
b) with elements not necessarily all distinct.

Naturally, the class of choices of the design parameters encompasses all choices of

x∗ subject to −1 ≤ x∗min < x∗max ≤ 1. Here, N is the treatment × block incidence

matrix involving elements 0 and 1 where the b blocks are arranged in dictionary
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style. Note that since b = vc2, each treatment is replicated exactly (v − 1) times in

the entire design. The problem is thus to make an ’optimal’ choice of the x∗-vector

with elements not necessarily distinct. We have resolved this problem - rather non-

trivially. We do not know if a simpler approach exists.

For the rest of the paper, we will revert back to the notation of x from x∗ so

that x-values are not necessarily distinct and there are b = vc2 pairs of treatments

attached to the x-values.

Not to obscure the essential steps of reasoning, we will go through the following

steps. Essentially, we claim that for every v > 2, there is an optimal choice of

the x-values across all the b pairs of treatments, and that these are located at the

extreme points, viz., −1 and 1. The specific allocations depend on the nature of v

and we distinguish among :

Case 1. v = 4t

Case 2. v = 4t+1

Case 3. v = 4t+2

Case 4. v = 4t+3.

First note that for k = 2, I(β) reduces to Q(x)/r where Q(x) = [x′(2rI − N ′N)x]

and r = v − 1. Towards maximization of I(β), we may and will ignore the divisor r

and work only with Q(x). The following lemmas are easy to establish and we defer

the proofs to the Appendix.

Lemma 2: Let Q(x) = x′(kI − N ′N)x be a quadratic form where k is a positive

constant and all the diagonal elements of the matrix N ′N are equal to a constant

d ≤ k. Then maximum of Q(x) with restriction on elements xi, that −1 ≤ xi ≤ 1,

is attained at a vector x0 with each element ±1.
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Lemma 3: For any vector x with elements ±1, Q(x) is a multiple of 8.

Lemma 4: Let v be even. Then for every vector x with each element ±1, the value

of x′N ′Nx ≥ v.

In view of Lemma 2, there exists a vector x0 having each element ±1 that maximizes

Q(x). Therefore Q(x0) = 2rb− x′0N
′Nx0 = PRU − x′0N

′Nx0, where PRU = 2rb.

Notice that Q(x0) ≤ PRU and equality occurs if and only if x′0N
′Nx0 = 0. In view

of Lemma 4, when v is even x′0N
′Nx0 ≥ v. Therefore, in this case Q(x0) ≤ PRU−v.

And in view of Lemma 3, when v is of the form 4t+ 3, PRU is not a multiple of 8

but a multiple of 4. Therefore, in this case Q(x0) ≤ PRU − 4. Thus we have,

Theorem 1: Q(x0) ≤ PRU − v for the even values of v and

Q(x0) ≤ PRU − 4 for the values of v of the form 4t+ 3.

Further, Q(x0) ≤ PRU , for the values of v of the form 4t+ 1.

It is shown below by construction, that for each value of v ≥ 4 there exists a vector

x0 such that equality holds in the above theorem. This vector is constructed in two

stages. First we get an eigen vector x corresponding to the eigenvalue 2r of the

matrix (2rI−N ′N) that may contain some zero elements in addition to +1 and −1.

Then we replace the zero elements of x with +1 or −1 to get x0.

Towards this, note that Q(x) being a quadratic form its maximum value is M(x′x)

where M is maximum eigenvalue of (2rI −N ′N) and x is an eigen vector (with the

restriction) corresponding to M such that (x′x) is maximum. As N ′N is positive

semi-definite matrix its minimum eigenvalue is zero and hence maximum eigenvalue

of (2rI − N ′N) is 2r. That is, M = 2r. It is easy to show that there is always

an eigen vector corresponding to M with elements in the set −1, 0, 1. Clearly, the

maximum of Q(x) is 2rb = v(v − 1)2, attained when x′x = b, that is, each element

of x is ±1 and x′N ′Nx = 0. This maximum value v(v − 1)2 is denoted by PRU .

In general, there may not be any such eigen vector x with each element as ±1, in

which case, PRU is not attained.
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Notice that x is an eigen vector of (2rI − N ′N) corresponding to 2r if and only

if Nx is null vector and this implies e′x = 0. Now, let x be the eigen vector of

(2rI −N ′N) corresponding to 2r. Construction of a vector x such that Nx = φ for

the values of v of the form 4t, 4t+ 2, 4t+ 1 and 4t+ 3 is given below.

Theorem 2: Let Nv×b be as above. There exists a vector xb×1 such that Nx = φ,

that is, x is an eigen vector of (2rI −N ′N) corresponding to the eigenvalue 2r such

that

1. when v is even, that is of the form 4t or 4t + 2, the vector x has v/2 zero

elements.

2. when v is of the form 4t+ 1, the vector x has no zero elements.

3. when v is of the form 4t+ 3, the vector x has 3 zero elements.

Proof: We construct a vector x of b elements as follows. Consider x as a vector of

v − 1 partitioned ’blocks’ of sizes v − 1, v − 2, · · · , 2, 1 such that the ith partitioned

block contains i elements in the natural order, following dictionary style.

Block No. and size v − 1 v − 2 · · · 2 1

x′ = · · ·

Case 1: When v is even, that is, v is of the form 4t or 4t+ 2.

Step 1: For each odd sized block, put zero as the first element and −1 and +1

alternately till the end of block. Notice that there are v/2 odd sized blocks.

Step 2: For each even sized block, put +1 and −1 alternately till the end of block.

Example 1: Let v = 8. Then b = 28. So x′ is written as 7 blocks.

Block No. 7 6 · · · 2 1

x′ = 0 -1 +1 -1 +1 -1 +1 +1 -1 +1 -1 +1 -1 · · · +1 -1 0
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Example 2: Let v = 6. Then b = 15. So x′ is written as 5 blocks.

Block No. 5 4 3 2 1

x′ = 0 -1 +1 -1 +1 +1 -1 +1 -1 0 -1 +1 +1 -1 0

Case 2: When v is of the form 4t+ 1.

In this case v− 1 is even and (v− 1)/2 is also even. Let x be the vector constructed

as above for the even case of 4t. Starting from block 1 replace each zero element of

x alternately with +1 and −1. Let the resulting vector be y which is of order 4t×1.

Construct the new vector x as x′ = (−y′N ′ : y′) where N is the incidence matrix

corresponding to the case of v = 4t.

Example 3: Let v = 9, that is of the form 4t + 1. Then b = 36. So x′ is written as

8 blocks. Here we use the vector constructed in example 1.

Block No. 8 7 · · · 2 1

x′ = +1 +1 -1 -1 +1 +1 -1 -1 -1 -1 +1 -1 +1 -1 +1 · · · +1 -1 1

Case 3: When v is of the form 4t+ 3.

In this case v − 1 is even and (v − 1)/2 is odd. Let x be the vector constructed

as above for the case of 4t + 2. Starting from block 1 replace each zero element of

x alternately with +1 and −1 except the (v − 1)th block. Let the resulting vector

be y. Construct the new vector x as x′ = (−y′N ′ : y′). It is easy to check that 3

elements (first, second and vth elements) of x are zeros and the rest of the elements

are ±1.

Example 4: Let v = 7, that is of the form 4t + 3. Then b = 21. So x′ is written as

6 blocks. Here we use the vector constructed in example 2.

Block No. 6 5 4 3 2 1

x′ = 0 0 +1 +1 -1 -1 0 -1 +1 -1 +1 +1 -1 +1 -1 -1 -1 +1 +1 -1 1

11



In all the above cases it is easy to check that Nx = φ.

For these constructed vectors the following table gives the values of Q(x).

Table 2

v x′x Q(x)

4t b− v/2 2(v − 1)(b− v/2) PRU − v(v − 1)

4t+ 1 b 2(v − 1)b PRU

4t+ 2 b− v/2 2(v − 1)(b− v/2) PRU − v(v − 1)

4t+ 3 b− 3 2(v − 1)(b− 3) PRU − 6(v − 1)

It is readily seen that only in the case of v = 4t + 1, the constructed x-vector has

all elements ±1. Except for this case, in all other cases, we will suggest appropriate

conversion of x by suitably replacing 0’s by ±1’s. For the case v = 4t + 3 we take

the vector x constructed above, replace the 3 zero elements (first, second and vth

elements) of x, with +1, +1 and −1. Denoting the resulting vector by x0, it is easy

to see that only the first element of Nx0 is 2 and the rest of the elements are zeros.

Hence x′0N
′Nx0 = 4.

When v is even, starting from block 1 replace all the v/2 zero elements of x with

+1 and −1 alternately. Denoting the resulting vector by x0, it is easy to check that

each element of Nx0 is ±1. Hence x′0N
′Nx0 = v. Therefore, we have established

that

Q(x0) = PRU − v, if v is even, that is, v is of the form 4t or 4t+ 2.

Q(x0) = PRU , if v is of the form 4t+ 1.

Q(x0) = PRU − 4, if v is of the form 4t+ 3.

As per Theorem 1, x0 constructed above depending on the value of v, maximizes

Q(x).

A Table showing the values of Q(x0) covering v = 4 to 17 is given later.
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Explicit solutions to the optimal allocation designs for the cases of v = 6, 7, 8, 9 are

given in the Appendix.

4. Generalization

In this section we consider the same problem but with distinct triplets of treat-

ments instead of pairs of treatments. We write p = (v−1)c2 and c = vc3. Further we

denote by Nv the incidence matrix of order v×vc2 for the case of pairs of treatments

considered in Section 2 and denote by Mv the incidence matrix of order v × vc3 for

the case of triplets of treatments. Similarly, we denote by xv the vector constructed

in Section 2 that maximizes Q(x) of Section 2. It is easy to verify the function

to be maximized in the case of triplets is T (yv) = y′v(3pI −M ′
vMv)yv, where yv

denotes the vector of order c×1 of covariate levels with each element in the interval

[−1, 1]. Notice that the maximum value T (yv) can attain is 3pc, attained if and

only if Mvyv = φ.

The following table gives the values of the scalar e′vxv and the vector Nvxv of order

v × 1 for different values of v.

Table 3

v e′vxv (Nvxv)
′ Description

4t 0 (−e′2 : e′2 : −e′2 : · · · : e′2) −e′2 and e′2 occur alternately

4t+ 1 0 ( 0 : 0 : 0 : · · · : 0) All elements are zero

4t+ 2 1 ( e′2 : −e′2 : e′2 : · · · : e′2) e′2 and − e′2 occur alternately

4t+ 3 1 ( 2 : 0 : 0 : · · · : 0) All elements are zero except the first which is 2

The proofs of the following two lemmas are on the same lines of proofs of Lemma 2

and Lemma 4.
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Lemma 5: Maximum of T (y) is attained at a vector y with each element ±1.

Lemma 6: Let p be odd, that is, v = 4t or 4t + 3. Then for every vector yv with

each element ±1, the value of y′M ′My ≥ v.

Now we are ready to state the main result of this section.

Theorem 3: For v > 4, the vector that maximizes T (yv) is given by

yv = (x′v−1 : y′v−1)
′ when v = 4t+ 3 and yv = (−x′v−1 : y′v−1)

′ in other cases

with y4 = (1 1 − 1 − 1)′.

Proof: Notice that Mv and hence Mvyv are given by

Mv =

 e′v−1 φ′

Nv−1 Mv−1)

 and Mvyv =

 ±e′v−1xv−1

±Nv−1xv−1 +Mv−1y
′
v−1



Using the above expression, it is easy to check that the values of Mvyv are as in the

following table:

Table 4

v (Mvyv)
′ description

4t (−e′2 : e′2 : −e′2 : · · · : e′2) −e′2 and e′2 occur alternately

4t+ 1 ( 0 : 0 : 0 : · · · : 0) All elements are zero

4t+ 2 ( 0 : 0 : 0 : · · · : 0) All elements are zero

4t+ 3 (1 : e′2 : −e′2 : e′2 : · · · : e′2) First element is 1and then e′2 and − e′2 alternate

This results in y′vM
′
vMvyv = 0 in case of v = 4t + 1 or 4t + 2 and y′vM

′
vMvyv = v

in case of v = 4t or 4t + 3. Hence MaxT (y) = 3pc, for t = 4t + 1 or 4t + 2 and
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MaxT (y) = 3pc− v for t = 4t or 4t+ 3 at the above constructed yv.

Remark : In general the vector xv that maximizes Q(x) of section 2 is not unique

and so in the construction of vector yv only xv constructed should be used.
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The following table gives the maximum values of Q(xv) and T (yv) for the values of

v = 4 to 17. Herein PRU2 and PRU3 refer to the maximum possible values of Q(x)

and T (y) respectively.

Table 5

v r b 2rb = (PRU2) MaxQ(xv) p c 3pc = (PRU3) MaxT (yv)

4 3 6 36 32 3 4 36 32

5 4 10 80 80 6 10 180 180

6 5 15 150 144 10 20 600 600

7 6 21 252 248 15 35 1575 1568

8 7 28 392 384 21 56 3528 3520

9 8 36 576 576 28 84 7056 7056

10 9 45 810 800 36 120 12960 12960

11 10 55 1100 1096 45 165 22275 22264

12 11 66 1452 1440 55 220 36300 36288

13 12 78 1872 1872 66 286 56628 56628

14 13 91 2366 2352 78 364 85176 85176

15 14 105 2940 2936 91 455 124215 124200

16 15 120 3600 3584 105 560 176400 176384

17 16 136 4352 4352 120 680 244800 244800

5. Concluding Observations

The formulation of the problem considered here is a bit different from that usually

adopted in covariates studies involving treatment designs. Usually, the experimenter

has the flexibility of choice of the quantitative covariate X for every single applica-

tion of any of the v treatments under consideration. That gives rise to [(yij;xij)] type

of data. This seems to raise a concern for increase in the cost of experimentation

since the labeling of the covariate-values may undergo constant and uncontrolled
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changes over the entire operation of the treatment-replicated experiments! In order

to avoid such scenarios, the experimenter is constrained to ’generate’ observations

in pairs as far as possible. We also considered briefly the generalization in the sense

of generating data in ’triplets’ of the treatments under consideration.

Even in the context of paired treatment scenario, consider a related problem. As

before, we start with v treatments but there is a restriction of generating paired

data only on a subset of vc2 treatment pairs. Given the subset, what would be

the optimal allocation of x-values for most efficient estimation of the β-parameter?

And, further to this, what would be the optimal subset selection and related optimal

allocation of x-values for a given number of distinct treatment pairs to be covered

in the experiment? These seem to be difficult issues.
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Part A : Proofs of Lemmas 2 to 4 are given below.

Lemma 2: Let Q(x) = x′(kI − N ′N)x be a quadratic form where k is a positive

constant and all the diagonal elements of the matrix N ′N are equal to a constant

d ≤ k. Then maximum of Q(x) with restriction on elements xi, that −1 ≤ xi ≤ 1,

is attained at a vector x0 with each element ±1.

Proof: Writing x as (y+xiei) and N ′N as (dI+M) where d is the common diagonal

element of N ′N , we have

Q(x) = x′(kI −N ′N)x

= (y + xiei)
′(kI −N ′N)(y + xiei)

= y′(kI −N ′N)y + x2i (k − d)− 2xi(y
′N ′Nei)

= y′(kI −N ′N)y + x2i (k − d)− 2xi(y
′(dI +M)ei)

= y′(kI −N ′N)y + x2i (k − d)− 2xi(y
′Mei)

= y′(kI −N ′N)y + x2i (k − d)− 2xi((x− eixi)
′Mei)

= y′(kI −N ′N)y + x2i (k − d)− 2xi(x
′Mei)

= y′(kI −N ′N)y + [x2i (k − d)− 2xi(Mx)i]

Now, the first term is independent of xi and it is easy to see that the value of

the second term will increase if we choose xi as ±1 with the sign opposite to that

of (Mx)i. It must be noted that (Mx)i dependents on other xj’s and is indeed

independent of xi. Hence the claim.

Lemma 3: For any vector x with each element ±1, Q(x) is a multiple of 8.

Proof: As each element of x is ±1, permute it so that all +1 elements are at the

top and denote the transpose of this vector as (e′u : −e′w), where u is the number of

positive elements and w is the number of negative elements. Permute and partition

N ′N accordingly as

 N1 N3

N ′3 N2

 so that

x′N ′Nx = (e′u : −e′w)

 N1 N3

N ′3 N2


 eu

−ew

 = e′uN1eu + e′wN2ew − 2e′uN3ew

= t1 + t2 − 2t3, say.
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Also note that t1 + t2 + 2t3 = 2rb. Therefore, from the above corollary, we have,

Q(x) = x′(2rI − N ′N)x = 2r(x′x) − x′N ′Nx = 2rb − x′N ′Nx = 4t3. Further, we

also have, t1 + t3 = 2(v − 1)u which is even. Since t1 is even, this implies t3 is even.

Thus Q(x) is a multiple of 8.

Lemma 4: Let v be even. Then for every vector x with each element ±1, the value

of x′N ′Nx ≥ v.

Proof:Let y = Nx. Then x′N ′Nx =
∑
y2i . So minimum of x′N ′Nx is attained when

each y2i is minimum. Notice that when v is even, every yi effectively reduces to an

odd (v − 1) combination of +1s and −1s. Therefore minimum of y2i = 1 and hence

of x′N ′Nx ≥ v.
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Part B : Explicit solutions for Optimal Allocations Designs

The following two tables give the vectors xv for v = 4 to 9 for the case of pairs of

treatments and yv for v = 5 to 8 for the case of triplets of treatments.

Table 6. xv for v = 4 to 9 for the case of pairs of treatments
v=4 x4 v=5 x5 v=6 x6 v=7 x7 v=8 x8 v=9 x9

12 -1

13 -1

14 1

15 1

16 -1

17 -1

18 1

19 1

12 -1 23 1

13 -1 24 -1

14 1 25 1

15 -1 26 -1

16 1 27 1

17 -1 28 -1

18 1 29 1

12 1 23 1 34 1

13 1 24 -1 35 -1

14 -1 25 1 36 1

15 -1 26 -1 37 -1

16 1 27 1 38 1

17 1 28 -1 39 -1

12 1 23 -1 34 1 45 -1

13 -1 24 -1 35 -1 46 -1

14 1 25 1 36 1 47 1

15 -1 26 -1 37 -1 48 -1

16 1 27 1 38 1 49 1

12 1 23 1 34 1 45 1 56 1

13 1 24 -1 35 -1 46 -1 57 -1

14 -1 25 1 36 1 47 1 58 1

15 -1 26 -1 37 -1 48 -1 59 -1

12 -1 23 -1 34 -1 45 1 56 -1 67 1

13 -1 24 -1 35 -1 46 -1 57 -1 68 -1

14 1 25 1 36 1 47 1 58 1 69 1

23 1 34 1 45 1 56 1 67 1 78 1

24 -1 35 -1 46 -1 57 -1 68 -1 79 -1

34 1 45 1 56 1 67 -1 78 1 89 -1
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Table 7. yv for v = 5 to 8 for the case of triplets of treatments
v=5 y5 v=6 y6 v=7 y7 v=8 y8

123 -1

124 -1

125 1

126 1

127 -1

128 -1

134 1

135 1

136 -1

137 1

138 -1

145 -1

146 1

147 -1

148 1

156 -1

157 1

158 -1

167 -1

168 1

178 1

123 1 234 1

124 -1 235 -1

125 1 236 1

126 -1 237 -1

127 1 238 1

134 1 245 1

135 -1 246 -1

136 1 247 1

137 -1 248 -1

145 -1 256 -1

146 -1 257 -1

147 1 258 1

156 1 267 1

157 -1 268 -1

167 1 278 1

123 -1 234 -1 345 -1

124 -1 235 -1 346 -1

125 1 236 1 347 1

126 1 237 1 348 1

134 1 245 1 356 1

135 1 246 1 357 1

136 -1 247 -1 358 -1

145 -1 256 -1 367 -1

146 1 257 1 368 1

156 -1 267 -1 378 -1

123 1 234 1 345 1 456 1

124 1 235 1 346 1 457 1

125 -1 236 -1 347 -1 458 -1

134 -1 245 -1 356 -1 467 -1

135 1 246 1 357 1 468 1

145 -1 256 -1 367 -1 478 -1

234 -1 345 -1 456 -1 567 -1

235 -1 346 -1 457 -1 568 -1

245 1 356 1 467 1 578 1

345 1 456 1 567 1 678 1
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