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Abstract : We introduce a class of processes termed as filtered fractional Poisson processes
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1 Introduction

Laskin (2003) investigated a processs called a fractional non-Markov Poisson stochastic pro-

cess based on fractional generalization of the Kolomogorov-Feller equation. Matzler and

Klafter (2000), Saichev and Zaslavsky (1997) and Zaslavsky (2002) observed that the main

experimentally observed features of anomalous kinetic phenomena in complex systems are

non-exponential time and non-Gaussian space patterns. The non-exponential evolution is

caused by the long-run memory effects in complex systems. One of the important features

of statistical inference of a counting process is the analysis of inter-arrival times. It is known

that the Poisson model leads to the exponential distribution of the inter-arrival times. The

fractional Poisson process (FPP) was introduced and investigated by Repin and Saichev

(2000) and Laskin (2003) to model counting processes with inter-arrival times which are

possibly non-exponential. Mainardi et al. (2004, 2007) and more recently by Meerschaert

et al. (2011) investigated a fractional generalization of the Poisson process and renewal pro-

cesses with non-exponential inter-arrival times. Laskin (2003) obtained the probability of

n arrivals by time t for a fractional steam of events and the probability density function

of the inter-arrival times of the fractional Poisson process. The fractional Poisson process

captures long-memory effect resulting in non-exponential waiting time distribution observed

empirically in complex systems. In contrast with Poisson process with a rate parameter λ,

the fractional Poisson process has two parameters β ∈ (0, 1] and λ > 0. If β = 1, then
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the FPP reduces to the Poisson process with parameter λ. Fractional Poisson process is a

renewal process with waiting times following the Mittag-Leffler distribution. Mittag-Leffeler

distribution is a generalization of the exponential distribution and has been introduced by

Pillai (1990). Parameter estimation for fractional Poisson process is studied in Cahoy et al.

(2010). Large deviations for fractional Poisson processes are discussed in Beghin and Macci

(2012). Our main contribution is to introduce new stochastic models based on processes

termed as the filtered fractional Poisson processes(FFPP) and the filtered fractional Levy

processes (FFLP) following the ideas of filtered Poisson processes due to Parzen (1962). We

will give several examples motivating this class of processes and study their properties.

2 Fractional Poisson Process

The filtered fractional Poisson process (FPP) is a generalization of the Poisson process. It is a

renewal process with independent and identically distributed (i.i.d.) waiting times Jn, n ≥ 1,

such that

P (J1 > t) = Eβ(−λtβ), t ≥ 0(2. 1)

for some 0 < β ≤ 1, where

Eβ(z) =
∞∑
k=0

zk

Γ(1 + βk)

denotes the Mittag-Leffler function (cf. Laskin (2003)). If β = 1, then the waiting times

Jn, n ≥ 1, are i.i.d. exponential with rate λ since E1(z) = ez. Let Tn = J1 + . . .+ Jn be the

time of the n-th jump of the FPP. Then the FPP

Nβ(t) = max{n ≥ 0 : Tn ≤ t}

with index β and rate λ is a renewal process with the Mittag-Leffler inter-arrival times. If

β = 1, then the FPP reduces to the Poisson process with rate or intensity parameter λ. Let

{D(t), t ≥ 0} be a right-continuous strictly increasing process with left-limits such that

E[e−sD(t)] = e−ts
β
, s > 0

for some 0 < β < 1. Let

R(t) = inf{r > 0 : D(r) > t}.(2. 2)

Let N1(t) be a Poisson process with rate parameter λ.We will call the process {N1(R(t)), t ≥
0} as the fractal time Poisson process (FTPP) following Meerschaert et al. (2011). It is a
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Poisson process with rate λ time-changed via the process {R(t), t ≥ 0}. Meerschaert et al.

(2011) proved that, for 0 < β < 1, the processes {N1(R(t)), t ≥ 0} and {Nβ(t)), t ≥ 0}
have the same probabilistic structure. Hence the waiting times of the FTPP are also i.i.d.

Mittag-Leffler as described earlier. From the results in Laskin (2003) and Cahoy et al.(2010),

it follows that

P (J1 > t) = E[exp(−λtβ/D(1)β)] = E[exp(−λR(t))]

and R(t) = [ t
D(1) ]

β. Results in Bingham (1971) show that the moment generating function of

the hitting time R(t) is Mittag-Leffler as given in equation (2.1). The results in Meerschaert

et al. (2011) uses the fact that if D(t) is a β-stable subordinator and T1 is an exponential

random variable, then D(T1) has the Mittag-Leffler distribution. The random variable D(t)

and t1/βD(1) are identically distributed. If W1 is exponential with parameter λ, then Pillai

(1990) proved that the random variable W
1/β
1 D(1) has the Mittag-Leffler distribution. The

Mittag-Leffler distribution is also known as the positive Linnik law (cf. Huillet (2000)).

Let

Eβ,γ(z) =
∞∑
k=0

zk

Γ(γ + βk)
.

For completion, we now list some properties of the fractional Poisson process with pa-

rameter β and λ as compared to a Poisson process with parameter λ following Laskin (2003)

and Cahoy and Polito (2013). For proofs, see Laskin (2003).

(i) The tail distribution of the waiting time J1 for the FPP with parameters β and λ is

given by

P (J1 > t) = Eβ(−λtβ)

and, for the Poisson process with parameter λ , it is

P (J1 > t) = e−λt.

(ii) The probability density function of the random variable J1 for the FPP with param-

eters β and λis given by

f(t) = λtβ−1Eβ,β(−λtβ), t > 0

and, for the Poisson process with parameter λ , it is

f(t) = λe−λt, t > 0.

(iii) The probability function for the FPP with parameters β and λ is given by

P (Nβ(t) = n) =
(λtβ)n

n!

∞∑
k=0

(k + n)!

k!

(−λtβ)k

Γ(β(k + n) + 1))
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and, for the Poisson process with parameter λ , it is

P (N1(t) = n) =
(λt)n

n!
e−λt.

(iv) The mean of the FPP with with parameters β and λ is

λtβ

Γ(β + 1)

and, for the Poisson process with parameter λ , it is

λt.

(v) The variance of the FPP with with parameters β and λ is

λtβ

Γ(β + 1)
+ (λtβ)2[

1

βΓ(2β)
− 1

Γ2(β + 1)

and, for the Poisson process with parameter λ , it is

λt.

(vi) The k-th moment of the FPP with with parameters β and λ is

(−1)k
∂k

∂sk
Eβ[λ(e

−s − 1)tβ]|s=0

and, for the Poisson process with parameter λ , it is

(−1)k
∂k

∂sk
exp[λ(e−s − 1)t]|s=0.

3 Filtered Fractional Poisson Process (FFPP)

Definition : A stochastic process {X(t), t ≥ 0} is said to be a filtered fractional Poisson

Process (FFPP) with the index β, 0 < β ≤ 1 and the rate λ > 0, if it can be represented in

the form

X(t) =

Nβ(t)∑
m=1

w(t, τm, Ym), t ≥ 0(3. 1)

where (i) the process {Nβ(t), t ≥ 0} is a fractional Poisson process with the index β, and the

rate λ (ii) the sequence {Yn, n ≥ 1} is a sequence of independent and identically distributed

random variables Y, independent of the process {Nβ(t), t ≥ 0} and (iii) the function w(t, τ, y)

is a function called the response function.
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If τm represents the time at which an event occurred according to the fractional Poisson

process {Nβ(t), t ≥ 0}, then the random variable Ym represents the amplitude of the signal

associated with the event and w(t, τm, y) is the value at time t of a signal of magnitude y

originating at time τm and X(t) represents the value at time t of the signals arising from the

events occurring up to time t.

We now present an example od a phenomenon where FFPP can be used for its stochastic

modeling. This example, in the context of filtered Poisson process, is discussed in Parzen

(1962).

Example 3.1: Consider a telephone exchange system with an infinite number of channels.

Each call gives rise to a conversation on one of the free channels available. Suppose the

subscribers make calls at times τ1, τ2, . . . where 0 < τ1 < τ2 < . . . and the arrival of calls

follow a FFPP with the index β and the rate λ. The holding time, that is the duration of

the conversation, of the subscriber calling at time τn, is denoted by Yn. We assume that the

sequence {Yn, n ≥ 1} are i.i.d. random variables. Let X(t) denote the number of channels

busy at time t. Note that X(t) is the number of instants τn for which τn ≤ t ≤ τn+ Yn. This

in turn can be represented in the form

X(t) =

Nβ(t)∑
n=1

w0(t− τn, Yn)

where

w0(s, y) = 1 if 0 ≤ s ≤ y

= 0 if s < 0 or s > y

and Nβ(t) denotes the number of calls in the interval [0, t].

The example described above gives a stochastic model FFPP for the number of busy

channels in a telephonic system. A similar FFPP stochastic model can be considered for

modeling (i) the number of busy servers in an infinite-server queue, (ii) the number of claims

in force on a workman’ compensation insurance policy, or (iii) the number of pulses locking

a paralyzable counter. For such models built on a Poisson model, see Parzen (1962). The

function

w(t, τ, y) = w0(t− τ, y)
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where the function w0(s, y), as defined above, is the response function for the Example 3.1

of the FFPP described above. Here the the effect at time t of a signal occurring at time τ

depends only on the difference t− τ. One can consider other examples of response functions

which can be used for building stochastic models of the FFPP. These are functions of the

type

w0(s, y) = 1 if 0 < s < y

= 0 otherwise

and

w0(s, y) = y − s if 0 < s < y

= 0 otherwise.

These functions give rise to stochastic models of FFPP useful in business models. Functions

of the type

w0(s, y) = y w1(s)(3. 2)

where w1(s) is a suitable function with w1(s) = 0 for s < 0 are used as response functions

for models in shot noise. The choice of the function

w1(s) = 1 if s ≥ 0

= 0 if s < 0

leads to compound fractional Poisson process.

4 Moments of FFPP

Suppose the response function w(t, τ, y) has the property that w(t, τ, y) = 0 if t < τ. In

other words, a signal occurring at time τ has no influence on happenings at an earlier time

τ. We will now evaluate the characteristic function of the random vector (X(t1), X(t2)) and

obtain formulae for the computation of moments and covariance function of the of process

{X(t), t ≥ 0} whenever they exist. Without loss of generality, suppose that 0 ≤ t1 < t2 <∞.

Note that the process {X(t), t ≥ 0} can be represented in the form

X(t) =
∞∑
m=1

w(t, τm, Ym)
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and hence, for any −∞ < u1, u2 <∞,

u1 X(t1) + u2 X(t2) =

Nβ(t2)∑
m=1

g(τm, Ym)

where

g(τ, y) = u1 w(t1, τ, y) + u2 w(t2, τ, y).

Note that

Φ(u1, u2) = E[eiZ ]

is the characteristic function of the bivariate random vector (X(t1), X(t2)) where

Z =

Nβ(t2)∑
m=1

g(τm, Ym).

Observe that

E[eiZ ] =
∞∑
n=0

E[eiZ |Nβ(t2)−Nβ(0) = n]P [Nβ(t2)−Nβ(0) = n]

=
∞∑
n=0

E[eiZ |N1(R(t2))−N1(R(0)) = n]P [N1(R(t2))−N1(R(0)) = n].

From Theorem 2.2 of Meerschaert et al. (2011), it follows that, for any 0 < β < 1, the

fractal time Poisson process (FTPP) {N1(R(t))), t ≥ 0} is a FPP and the waiting times

between the jumps of the FTPP are i.i.d. Mittag-Leffler. Let Wn be an i.i.d. sequence with

P (Wn > t) = e−λt and Vn =W1 + . . .+Wn. Let τn = sup{t > 0 : N1(R(t)) < n} denote the

jump times of the FTPP. From the fact that [N1(t) < n] = [Vn > t], it follows that

τn = sup{t > 0 : R(t) < Vn}.

Let X1 = τ1 and Xn = τn − τn−1 for n ≥ 2. Then the sequence {Xn, n ≥ 1} are the waiting

times between the jumps of the FTPP and they are i.i.d. Mittag-Leffler. Furthermore

E[e−sτ1 ] =
λ

λ+ sβ
, s ≥ 0

and

E[e−s1τ1−s2τ2 ] =
λ

λ+ (s1 + s2)β
λ

λ+ sβ2
, s1 ≥ 0, s2 ≥ 0

from the results in Meerschaert et al. (2011).
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Suppose that n events of the FPP {Nβ(t), t ≥ 0} occur at epochs 0 < t1 < . . . < tn ≤ t

during (0, t] with P (Nβ(0) = k) = 1 if k = 0 and P (Nβ(0) = k) = 0 if k ≥ 1. The joint

probability density function of (τ1, τ2, . . . , τn) and Nβ(t) is given by

P (τ1 ∈ (t1, t1 + dt1), . . . , τn ∈ (tn, tn + dtn) and no event occurs in (tn + dtn, t]))

= {Πni=1[λ(ti − ti−1)
β−1Eβ,β(−λ(ti − ti−1)

β)]}Eβ(−λ(t− tn)
β)

= λn[Πni=1(ti − ti−1)
β−1][Πni=1Eβ,β(−λ(ti − ti−1)

β)]Eβ(−λ(t− tn)
β)

where

Eβ(z) =
∞∑
k=0

zk

Γ(1 + βk)

as defined earlier and

Eβ,γ(z) =
∞∑
k=0

zk

Γ(γ + βk)
.

This follows from the fact that the inter-arrival density for the fractional Poisson process

with parameters β and λ is given by

fβ(t) = λtβ−1Eβ,β(−λtβ), t ≥ 0

= 0 otherwise

from the results in Laskin (2003). Furthermore

P (Nβ(t) = n) =
(λtβ)n

n!

∞∑
k=0

(k + n)!

k!

(−λtβ)k

Γ(β(k + n) + 1))
(4. 1)

(cf. Laskin (2003), Eqn (25); Cahoy and Polito (2013)). Hence the conditional density

function of the random vector (τ1, τ2, . . . , τn) given that Nβ(t) = n is given by

hλ,β(t1, . . . , tn) =

n!

tβn
[Πni=1(ti − ti−1)

β−1][Πni=1Eβ,β(−λ(ti − ti−1)
β)]Eβ(−λ(t− tn)

β)∑∞
k=0

(k+n)!
k!

(−λtβ)k
Γ(β(k+n)+1))

dt1 . . . dtn

for 0 < t1 < . . . < tn < t and zero otherwise. If β = 1, then the the FPP reduces to the

Poisson process with intensity parameter λ and the density function given above reduces to

the density function of the order statistics of a random sample of size n from the Uniform

distribution on the interval [0, t].
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We shall now evaluate the characteristic function of the random variable Z following the

technique in Parzen (1962), p.155. Observe that P (Nβ(0) = 0) = 1), and

E[eiZ ] =
∞∑
n=0

E[eiZ |Nβ(t2) = n]P [Nβ(t2) = n].

Let A be the event that Nβ(t2) = n and

ηn(u1, u2) = EY [exp{i
n∑

m=1

g(τm, Ym)}|A].

For real numbers s1, . . . , sn satisfying 0 ≤ s1 < s2 < .... < sn ≤ t2, define

ϕ(s1, ..., sn) = EY [exp{i
n∑

m=1

g(sm, Ym)}|A, τ1 = s1, ..., τn = sn].

Then

ϕ(s1, ..., sn) = Πnm=1EY [exp{ig(sm, Y )}].

Hence

ηn(u1, u2) =

∫ t2

0
ds1

∫ t2

s1
ds2 . . .

∫ t2

sn−1

ϕ(s1, . . . , sn)hλ,β(s1, . . . , sn)dsn

=

∫ t2

0
ds1

∫ t2

s1
ds2 . . .

∫ t2

sn−1

Πnm=1EY [exp{ig(sm, Y )}]hλ,β(s1, . . . , sn)dsn.

Therefore

E[eiZ ] =
∞∑
n=0

ηn(u1, u2)P (Nβ(t2) = n)

=
∞∑
n=0

ηn(u1, u2)
(λtβ2 )

n

n!

∞∑
k=0

(k + n)!

k!

(−λtβ2 )k

Γ(β(k + n) + 1))

(see Laskin (2003), Eqn. (54) for computation of the moment generating function of Z).

As a consequence of this representation of the characteristic function of the random vector

(X(t1), X(t2)), one can compute the moments of the process X(t) using the formulae

i E[X(t1)] =
d

du1
log Φ(u1, 0)|u1=0,

i2 V ar[X(t1)] =
d

du21
log Φ(u1, 0)|u1=0,
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and

i Covar[X(t1), X(t2)] =
∂2

∂u1∂u2
log Φ(u1, u2)|u1=0,u2=0

following the standard results connecting characteristic functions of random vectors and joint

moments of random vectors ( cf. Roussas ( 1973), p. 111)). Our approach for computation

of mean and other moments is analogous to that in Parzen (1962) based on characteristic

functions of the random vectors which exist always for any probability distribution where as

Laskin (2003) approached the problem through moment generating functions whose existence

has to be established in any given problem. Laskin (2003) computes the moment generating

function of a FCPP and derived its mean function. We consider more general FFPP and

derive formulae for its mean and covariance function. Specific computation depends on the

choice of the response function w(t, τ, y).

5 Applications

(i) Let X(t) be the number of busy channels in an exchange with an infinite number of

channels or the number of busy servers in an infinite-server queue or the number of workmen

who are drawing compensation insurance at time t dealing with the number of claims in

force on a workman’s compensation insurance. We assume that the arrival of calls or of

customers are events of fractional Poisson type with parameters β and λ and that the service

or holding times are independent and identically distributed with a distribution with non-

negative support. Here the process {X(t), t ≥ 0} is a filtered fractional Poisson process and

its moments can be obtained by applying the results described in the previous section.

(ii) A stochastic process {X(t), t ∈ R} is said to be a fractional shot noise process if it can

be represented as the super position of impulses occurring at random times . . . , τ−1, τ0, τ1, . . . .

All impulses are assumed to have the same shape w(s) so that

X(t) =
∞∑

m=−∞
w(t− τm).

As a more general case, the impulse shapes may be randomly chosen from a family of shapes

w(s, y) indexed by a parameter y. At each time τm, the parameter y is chosen as the obser-

vation of a random variable Ym and the process X(t) is defined to be the superposition

X(t) =
∞∑

m=−∞
w(t− τm, Ym).
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The times {τm,−∞ < m < ∞} are assumed to occur according to a fractional Poisson

process with parameters λ and β and the random variables {Ym} are assumed to be i.i.d.

random variables. One can derive the mean, the variance and the covariance of the process

{X(t), t ≥ 0} by following the methods described earlier. These results generalize the Camp-

bell’s theorem on the superposition of random impulses when the arrivals form a Poisson

process (cf. Rice (1944)) to the fractional Poisson process.

(iii) Consider a filtered fractional Poisson process {X(t), t ∈ R} given by

X(t) =
∞∑

m=−∞
w(t− τm)

where {τm,−∞ < m < ∞} are the times of occurrence of events following a fractional

Poisson process with parameters λ and β and the function

w(s) = c|s|−γ if s ≥ 0

= −w(−s) if s < 0

where c and γ are positive. It is possible to give an interpretation to this filtered fractional

Poisson process. Suppose the particles are distributed randomly on a line in accordance with

a fractional Poisson process with parameters λ and β. Suppose the force between any two

particles is one of attraction and of magnitude cr−γ where c > 0 and r is the distance between

the particles. Then the random variable X(t) represents the total force that would be exerted

on a particle located at t. Since the force and acceleration are equal up to a constant factor,

it is also possible to interpret the random variable X(t) as the acceleration of the particle

located at t. This model for acceleration may be generalized to particles distributed in space.

6 Fractional Compound Poisson Process

Laskin (2003) introduced Fractional Compound Poisson process (FCPP) and computed the

moment generating function of the FCPP. A stochastic process {X(t), t ≥ 0} is said to be a

fractional compound Poisson process (FCPP) if it can be represented as

X(t) =

Nβ(t)∑
n=1

Yn

11



where {Nβ(t), t ≥ 0} is a FPP with parameters β and λ and {Yn, n ≥ 1} is a family of i.i.d.

random variables distributed as a random variable Y. The process {Nβ(t), t ≥ 0} and the

sequence {Yn, n ≥ 1} are assumed to be independent.

There are several phenomena where such processes arise. An example is the total claims

of policy holders of an insurance company. Suppose the policy holders of a life insurance

company die at times τ1, τ2, . . . where 0 < τ1 < τ2 < . . . . Deaths are assumed to be events

of the fractional Poisson type with parameters β and λ. The policy holder dying at time τn

carries a policy for an amount Yn which is paid to his beneficiary at the time of his death.

The insurance company is interested in knowing X(t), the total amount of claims it will have

to pay in the time [0, t] in order to determine how large a reserve to have on hand to meet the

claims it will have to pay. Here the process {X(t), t ≥ 0} is a fractional compound Poisson

process.

7 Testing for FPP

Recall that the FPP with parameters β and λ is a renewal process with i.i.d. waiting times

Jn that satisfy

P (Jn > t) = Eβ(−λtβ)

where 0 < β ≤ 1 and Eβ(z) is the Mittag-Leffler function. This fact can be used to describe

a method for testing the hypothesis that a sequence of events occurring in time are events

of fractional Poisson type. The observed inter-arrival times J1, . . . , Jn are assumed to be

independent identically distributed observations. Using various goodness-of-fit tests, such as

the Chi-square test for goodness-of-fit, one can test the hypothesis that J1 has the Mittag-

Leffler distribution.

8 Estimating the parameter λ of a fractional Poisson process

Cahoy(2013) describes a procedure for estimating the parameters of a Mittag-Leffler distri-

bution by using the method of moments. If one observes a fractional Poisson process Nβ(t)

for a fixed observation time t, then the number Nβ(t) = N1(R(t)) is fractal time Poisson

process following the work in Meerschaert et al. (2011) where the process R(t) is as defined

by (2.2). Suppose the process is observed until a fixed number m of the events have occurred.
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Let Tm be the total time required. It can be shown that

E(e−sTm) =
λ

λ+ sβ
, s ≥ 0(8. 1)

(cf. Meerschaert et al. (2011)). Applying the method of moments,, one can estimate the

parameter λ, from the equation

e−sTm =
λ

λ+ sβ

assuming that the parameter β is known for given s or estimate the parameters λ and β by

equating the moments for two different values of s.

9 Comparing fractional Poisson processes

Let the processes {Nβ(t), t ≥ 0} and {N ′
β(t), t ≥ 0} be two independent fractional Poisson

processes with parameters β and λ and β and λ′ respectively. The problem of interest is to

test whether λ = λ′. Let Tn be the waiting time for the n-th event under the process N and

T ′
m be the waiting time for the m-th event under the process N ′. It would be interesting to

find the distribution of the ratio Tn/T
′
n under the hypothesis λ = λ′ and this can be used for

testing the hypothesis λ = λ′.

10 Testing whether the events are of fractional Poisson type

Suppose that a stochastic process is observed until n events have occured. Let Uj denote

the time at which the j-th event has occurred. Following Meerschaert et al. (2011), we

have seen earlier that if a process is a fractional Poisson process, then the inter-arrival times

Uj − Uj−1, 1 ≤ j ≤ n are i.i.d. random variables and have the Mittag-Leffler distribution

for some parameters β and λ. Let Sn =
∑n
i=1[Ui − Ui−1]. For large values of n, the random

variable Sn has approximately a normal distribution with mean and variance depending on

β and λ. This can be used for testing whether the process is of Poisson type in the class of

fractional Poisson processes by testing the hypothesis β = 1 against the alternate hypothesis

that β < 1 and in general for testing whether the events are of fractional Poisson type among

the class of all counting processes.
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11 Extension of FFPP

(i) One can generalize the family of filtered fractional Poisson processes much further. Let

{W (t, τ), t ≥ 0, τ ≥ 0} be a stochastic process with characteristic function

ΦW (t,τ)(u) = E[exp{iu W (t, τ)}].

Let {Wm,m ≥ 1} be a family of stochastic processes identically distributed as W. Let τ1 <

. . . < τm < . . . be the times of occurrences of the events of fractional Poisson type with

parameters λ and β. Let Nβ(t) be the number of events which have occurred in the interval

(0, t]. Suppose the processes {Nβ(t), t ≥ 0} and {Wm,m ≥ 1} are independent. Let

X(t) =

Nβ(t)∑
m=1

Wm(t, τm).

The process {X(t), t ≥ 0} is called a generalized filtered fractional Poisson process (GFFPP).

One can compute the characteristic function, mean and covariance of the process X by

methods similar to those discussed earlier.

As an example, we will now discuss a model for population processes with immigration.

Suppose an animal of a certain species immigrates to a certain region at time τ. Then the

number of descendants of this animal present in this region at time t is a random variable

W (t, τ). Suppose that there are no animals of this species in this region initially but that

animals of this species immigrate into the region at times τ1 < τ2 < . . . which are of fractional

Poisson type with parameters λ and β. Let Wm(t, τm) denote the number of descendants at

time t of the animal which immigrated to the region at time τm. Then the total number X(t)

of animals in the region of this species at time t is given by

X(t) =

Nβ(t)∑
m=1

Wm(t, τm).

Assuming independence of all the population processes under consideration, it can be seen

that the process {X(t), t ≥ 0} is a generalized FFPP. It is easy to compute the probability

generating function of the process X from the probability generating function of the process

W.

(ii) Generalization of Campbell’s theorem: Consider a stochastic process of the form

X(t) =
∑

−∞<τn<∞
Yn w(t− τm)
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where {τn, n ≥ 1} are the times of occurrences of events occurring following a fractional

Poisson process with parameters λ and β and {Yn, n ≥ 1} are i.i.d. random variables.

Following the ideas explained earlier, one can compute the cumulants of the random variable

X(t).

12 Filtered Fractional Levy Processes

Recall that, if {N1(t), t ≥ 0} is a Poisson process with intensity parameter λ, then {N1(R(t)), t ≥
0} is a FTPP where the process {R(t), t ≥ 0} is the right-continuous inverse of a process

{D(t), t ≥ 0} which is a β-stable subordinator with E[e−sD(t)] = e−ts
β
for some 0 < β < 1.

Following Meerschaert et al. (2011), let {Dψ(t), t ≥ 0} be a strictly increasing Levy process

with

E[e−sDψ(t)] = e−tψ(s)

where

ψ(s) = bs+

∫ ∞

0
(e−sx − 1)ϕ(dx),

b ≥ 0 and ϕ(.) is the Levy measure of the process {Dψ(t), t ≥ 0}. Let

Rψ(t) = inf{τ ≥ 0 : Dψ(τ) > t}.

Then the process {N1(Rψ(t)), t ≥ 0} is a renewal process with i.i.d. inter-arrival times

{Jn, n ≥ 1} satisfying

P (J1 > t) = E[e−λRψ(t)]

from Theorem 4.1 in Meerschaert et al. (2011). Let {Nψ(t), t ≥ 0} denote the renewal process
such that

Nψ(t) = max{n ≥ 0 : Tn ≤ t}

where Tn = J1 + . . .+ Jn. From Remark 4.2 of Meerschaert et al. (2011), it follows that the

processes {Nψ(t), t ≥ 0} and {N1(Eψ(t)), t ≥ 0} are the same. Meerschaert et al. (2011)

remark that

P (Nψ(t) = n) =

∫ ∞

0
e−λx

(λx)n

n!
hψ(x, t)dx

where hψ(t, x) is the probability density function of the random variable Rψ(t).

A stochastic process {X(t), t ≥ 0} is said to be a filtered fractional Levy process (FFLP)

if it can be represented in the form

X(t) =

Nψ(t)∑
m=1

w(t, τm, Ym), t ≥ 0(12. 1)
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where (i) the process {Nψ(t), t ≥ 0} is a fractional Levy process (ii) the sequence {Yn, n ≥ 1}
is a sequence of independent and identically distributed random variables Y, independent of

the process {Nψ(t), t ≥ 0} and (iii) the function w(t, τ, y) is a function called the response

function.
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