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Abstract: We consider the GARCH-type model S = σ2Z where σ2 and Z are independent

random variables. We assume that the density fσ2 of σ2 is unknown with support [0, 1]

but differentiable where as the density fS of S is bounded. We will also assume that the

probability density function of the random variable Z is known and has the same distribution

as the ν-fold product of independent random variables uniformly distibuted on the interval

[0, 1]. We want to estimate the derivative of the density of σ2 from n independent and

identically distributed observations of S.We will construct adaptive and non-adaptive wavelet

estimators for the derivative of the density and obtain sharp upper bounds on their mean

integrated squared errors.

Keywords : Derivative of density estimation; GARCH-type model; Wavelets; Mean inte-

grated squared error; Upper bound; Nonparametric inference.
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1 Introduction

We consider the GARCH-type model S = σ2Z where σ2 and Z are independent random

variables. We assume that the density of σ2 is unknown with support [0, 1] but differentiable

with a derivative square integrable on the interval [0, 1], where as the density of Z is known.

We want to estimate the derivative of the density of σ2 from n independent and identically

distributed (i.i.d.) observations of S. We will construct adaptive and non-adaptive wavelet

estimators for the derivative of the density and study their properties.

Methods of nonparametric estimation of a density function and regression function are

widely discussed in the literature (cf. Prakasa Rao (1983, 1999a)). It is known that the

estimation of derivatives of a density are also of importance and interest to detect possible

bumps and to detect monotonicity, concavity or convexity properties of the density function.

Asymptotic properties of the kernel type estimators for the derivatives of density have been
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investigated earlier (cf. Prakasa Rao (1983)).

The Garch-type model is widely used in financial time series and the stochastic volatility

σ2 is unobserved (cf. Carrasco and Chen (2002)). Estimation of the probabilty density func-

tion of the stochastic volatility σ2 is of extreme importance in analyzing financial data. The

volatility function is nonnegative and can be assumed to be bounded in practice. Hence we

can assume without loss of generality that the support of the stochastic volatility function

is the interval [0, 1]. Our aim in this paper is to discuss wavelet linear estimators for the

derivative of a probability density function of the volatility function σ2, assuming that it

exists, from an i.i.d. sample of observations {Si, 1 ≤ i ≤ n}. Estimators of density using

wavelets was studied for independent and identically distributed random variables in An-

toniadis et al. (1994), for some stationary dependent random variables in Leblanc (1996)

and, for stationary associated sequences in Prakasa Rao (2003). Chaubey et al. (2006, 2008)

extended these results to derivatives of density estimators for associated sequences and for

negatively associated processes. The advantages and disadvantages of the use of wavelet

based probability density estimators are discussed in Walter and Ghorai (1992) in the case

of independent and identically distributed observations. However it was shown in Prakasa

Rao (1996, 1999b) that one can obtain precise limits on the asymptotic mean squared error

for a wavelet based linear estimator for the density function and its derivatives as well as

some other functionals of the density. Tribouley (1995) studied estimation of multivariate

densities using wavelet methods. Prakasa Rao (2000) investigated nonparametric estimation

of the partial derivatives of a multivariate probability density. Donoho et al. (1996) inves-

tigated density estimation by wavelet thresholding. For a discussion on statistical modeling

by wavelets, see Vidakovic (1999).

In recent papers, Chesneau and Doosti (2012) studied wavelet estimation of density for

a GARCH model under various dependence structures and Chesneau (2013) investigated

wavelet estimation of a density in a GARCH-type model leading to upper bounds on the

mean integrated squared error. Shirazi et al. (2012) obtained wavelet based estimation of

the derivative of a density by blockthresholding under random censorship. We will study

estimation of the derivative of a density in GARCH-type model which can be considered

as a generalization of multiplicative censoring model. Vardi (1989) (cf. Vardi and Zhang

(1992)) introduced the multiplicative censoring model which unifies several models including

nonparametric inference for renewal processes, non-parametric deconvolution problems and

estimation of decreasing density functions. Chaubey et al. (2013) studied adaptive wavelet
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estimation of a density from mixtures under multiplicative censoring model generalizing the

results in Prakasa Rao (2010). Asgharian et al. (2012) investigated asymptotic properties of

the kernel density estimators under multiplicative censoring model. Andersen and Hansen

(2001) studied density estimation for multiplicative censoring model using a series expansion

approach. Chaubey et al. (2011) give a survey of recent results on linear wavelet density

estimation and Chaubey et al. (2014) discuss adaptive wavelet estimation of a density from

mixtures under multiplicative censoring.

2 Preliminaries on wavelets

A wavelet system is an infinite collection of translated and scaled versions of functions ϕ(.)

and ψ(.) called the scaling function and the primary wavelet function respectively. In the

following discussion, we assume that ϕ(.) is real-valued. The function ϕ(x) is a solution of

the equation

ϕ(x) =
∞∑

k=−∞
Ckϕ(2x− k)(2. 1)

with ∫ ∞

−∞
ϕ(x)dx = 1(2. 2)

and the function ψ(x) is defined by

ψ(x) =
∞∑

k=−∞
(−1)kC−k+1ϕ(2x− k).(2. 3)

The choice of the sequence {Ck} determines the wavelet system. It is easy to see that

∞∑
k=−∞

Ck = 2.(2. 4)

Define

ϕjk(x) = 2j/2ϕ(2jx− k),−∞ < j, k <∞(2. 5)

and

ψjk(x) = 2j/2ψ(2jx− k),−∞ < j, k <∞.(2. 6)

Suppose the coefficients {Ck} satisfy the condition

∞∑
k=−∞

CkCk+2ℓ = 2 if ℓ = 0(2. 7)

= 0 if ℓ ̸= 0.
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It is known that, under some additional conditions on ϕ(.), the collection {ψj,k,−∞ < j, k <

∞} is an orthonormal basis for L2(R), and {ϕj,k,−∞ < k < ∞} is an orthonormal system

in L2(R), for each −∞ < j <∞ (cf. Daubechies (1988, 1992)).

Definition 2.1: The scaling function ϕ is said to be r-regular for an integer r ≥ 1, if for

every nonnegative integer ℓ ≤ r, and for any integer k ≥ 1,

|ϕ(ℓ)(x)| ≤ ck(1 + |x|)−k,−∞ < x <∞(2. 8)

for some ck ≥ 0 depending only on k. Here ϕ(ℓ)(.) denotes the ℓ-th derivative of ϕ(.).

Definition 2.2: A multiresolution analysis of L2(R) consists of an increasing sequence of

closed subspaces {Vj} of L2(R) such that

(i) ∩∞
j=−∞Vj = {0} ;

(ii)∪̄∞
j=−∞Vj = L2(R);

(iii) there is a scaling function ϕ ∈ V0 such that {ϕ(x− k),−∞ < k <∞} is an orthonormal

basis for V0;

(iv) for all h(.) ∈ L2(R),−∞ < k <∞, h(x) ∈ V0 ⇒ h(x− k) ∈ V0; and

(v) h(.) ∈ Vj ⇒ h(2x) ∈ Vj+1.

Mallat (1989) has shown that, given any multiresolution analysis, it is possible to find a

function ψ(.) (called primary wavelet function) such that , for any fixed j,−∞ < j <∞, the

family {ψj,k,−∞ < k < ∞} is an orthonormal basis of the orthogonal complement Wj of

Vj in Vj+1 so that {ψj,k,−∞ < j, k < ∞} is an orthonormal basis of L2(R) (cf. Daubechies

(1988, 1992)). When the scaling function ϕ(.) is r-regular, the corresponding multiresolution

analysis is said to be r-regular.

Let f ∈ L2(R). The function f can be expanded in the form (cf. Daubechies (1992)):

f =
∞∑

k=−∞
as,kϕs,k +

∞∑
j=s

∞∑
k=−∞

bj,kψj,k(2. 9)

= Psf +
∞∑
j=s

Djf

for any integer −∞ < s <∞. Observe that the wavelet coefficients are given by

as,k =

∫ ∞

−∞
f(x)ϕs,k(x)dx(2. 10)

and

bj,k =

∫ ∞

−∞
f(x)ψj,k(x)dx.(2. 11)
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Suppose that the functions ϕ and ψ belong to Cr, the space of functions with r continuous

derivatives for some r ≥ 1, and have compact support contained in an interval [−δ, δ] for
some δ > 0. It follows, from the Corollary 5.5.2 in Daubechies (1988), that the function ψ(.)

is orthogonal to polynomials of degree less than or equal to r. In particular∫ ∞

−∞
ψ(x)xℓdx = 0, ℓ = 0, 1, . . . , r.

The above introduction to wavelets is based on Antoniades et al. (1994). For a detailed

discussion, see Daubechies (1992). For a brief survey on wavelets, see Strang (1989).

3 Introduction to Sobolev spaces and Besov spaces

Let f be a function defined on the real line which is integrable on every bounded interval. It

is said to be weakly differentiable if there exists a function g defined on the real line which

is integrable on every bounded interval such that∫ y

x
g(u)du = f(y)− f(x).

The function g is defined almost everywhere and is called the weak derivative of f (cf. Hardle

et al. (1998)). It is known that, if f is weakly differentiable with weak derivative g, then

∫ ∞

−∞
f(u)ϕ′(u)du = −

∫ ∞

−∞
g(u)ϕ(u)du

for any ϕ ∈ D(R) where D(R) denotes the space of infinitely differentiable functions, on the

real line R, with compact support.

Definition 3.1: Let 1 ≤ p ≤ ∞ and m ≥ 0 be an integer. A function f ∈ Lp(R) belongs

to the Sobolev space Wm
p (R), if it is m-times weakly differentiable and f (m) ∈ Lp(R). In

particular W 0
p (R) = Lp(R). The space Wm

p (R) is equipped with the norm

||f ||Wm
p

= ||f ||p + ||f (m)||p

where ||f ||p denotes the norm for Lp(R).

Let W̃m
p (R) =Wm

p (R) if 1 ≤ p <∞ and W̃m
∞(R) = {f : f ∈Wm

∞(R) : f (m) uniformly continuous }.
Note that W̃ 0

p (R) = Lp(R), 1 ≤ p <∞.
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Let f ∈ Lp(R) for some 1 ≤ p ≤ ∞. Let (∆hf)(x) = f(x − h) − f(x) and define

∆2
hf = ∆h∆hf. For t ≥ 0, define

ω1
p(f, t) = sup

|h|≤t
||∆hf ||p

and

ω2
p(f, t) = sup

|h|≤t
||∆2

hf ||p.

Let 1 ≤ q ≤ ∞. Suppose there exists a function ϵ(t) on [0,∞) such that ||ϵ||∗q <∞ where

||ϵ||∗q = (

∫ ∞

0
t−1|ϵ(t)|qdt)1/q, if 1 ≤ q <∞(3. 1)

= ess sup
t

|ϵ(t)|, if q = ∞.

Definition 3.2: Let 1 ≤ p, q ≤ ∞ and s = n+α where n ≥ 0 is an integer and 0 < α ≤ 1. The

Besov space Bs
p,q is the space of all functions f such that f ∈Wn

p (R) and ω
2
p(f

(n), t) = ϵ(t)tα

where ||ϵ||∗q <∞.

For properties of Besov spaces, see Meyer (1990) and Triebel (1992) (cf. Leblanc (1996),

Hardle et al. (1998)).

Suppose that the function f belongs to the Besov class

Fs,p,q(L) = {f ∈ Bs
p,q, ||f ||Bs

p,q
≤ L}

for some 0 < s < r + 1, p ≥ 1 and q ≥ 1, where

||f ||Bs
p,q

= ||P0f ||p + [
∑
j≥0

(||Djf ||p2js)q]1/q.

Given a double indexed sequence {γj,k} define the norm

||γj,.||ℓp = (
∑
k

γpj,k)
1/p.(3. 2)

In view of the representation (2.9), it be can shown that the function f ∈ Bs
p,q if and only if

||as,.||ℓp <∞, and (
∑
j≥s

[||bs,.||ℓp2j(s+(1/2)−(1/p))]q)1/q <∞.(3. 3)

Let ϕ(.) be a scaling function as defined earlier. Define

θϕ(x) =
∞∑

k=−∞
|ϕ(x− k)|.
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Suppose the following conditions hold:

(C1) The ess supx θϕ(x) <∞ where

ess sup
x
g(x) = inf{y : λ([x : g(x) > y]) = 0}

and λ is the Lebesgue measure on the real line.

(C2) There exists a bounded nondecreasing function Φ(.) such that |ϕ(u)| ≤ Φ(|u|) almost

every where and

∫ ∞

0
|u|rΦ(|u|)du <∞.

for some integer r ≥ 0.

Lemma 3.1: Suppose that the scale function ϕ(.) is such that the collection {ϕ(x−k),−∞ <

k < ∞} is an orthonormal system in L2(R) and the spaces Vj ,−∞ < j < ∞ are nested.

Further suppose that the function ϕ satisfies the condition (C2) and it is r+ 1 times weakly

differentiable. If ϕ(r+1) satisfies the condition (C1), then the norm ||.||Bs
p,q

is equivalent to

the norm ||.||′Bs
p,q

in the space of the wavelet coefficients for all s, p, q such that 0 < s < r+1

and 1 ≤ p, q ≤ ∞ where

||f ||′Bs
p,q

= ||a0||p + (
∞∑
j=0

(2j(s+(1/2)−(1/p))||bj ||p)q)1/q.

Here ||a0||p denotes [
∑∞

k=−∞ |a0,k|p]1/p and ||bj ||p denotes [
∑∞

k=−∞ |bj,k|p]1/p.

For a proof of Lemma 3.1, see Theorem 9.6 in Hardle et al. (1998), p.123.

4 Estimation of the d-th derivative of a probability density

function

Let {Yi, 1 ≤ i ≤ n} be independent and identically distributed random variables with prob-

ability density function f which is d-times differentiable. Suppose that the derivative f (d)

is bounded and has compact support. Suppose that f (d) ∈ L2(R). Let us first consider the

estimation of the probability density function f. A wavelet based density estimator of the

density function f can be motivated in the following way from the expansion given in (2.9)

(cf. Prakasa Rao (2003)). We can estimate f(x) by f̂(x) where

f̂(x) =
∑
k∈Ns

αs,kϕs,k(x)(4. 1)
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where

αs,k =
1

n

n∑
i=1

ϕs,k(Yi).(4. 2)

HereNs is the set of integers k such that supp(f)∩supp(ϕs,k) is nonempty. Since the functions

f and ϕ have compact supports, the cardinality of the set Ns is finite and it is of the order

O(2s).

Let us now consider the problem of estimation of the derivative f (d) of f. As in Prakasa

Rao (1996), we assume that the scaling function ϕ(.) generates a r-regular multiresolution

analysis for some r ≥ 2 and that there exists Cm ≥ 0 and βm ≥ 0 such that

|f (m)(x)| ≤ Cm(1 + |x|)−βm , 0 ≤ m ≤ r.(4. 3)

This assumption implies that that the derivative ϕ(d) is bounded for every d ≥ 0(cf. Prakasa

Rao (1996)). Furthermore the projection of f (d) on Vs is

f (d)s (x) =
∑
k∈Ns

as,kϕs,k(x)(4. 4)

where

as,k = (−1)d
∫ ∞

−∞
f(x)ϕ

(d)
s,k(x)dx.

The equation given above can be justified by using integration by parts since the function

ϕ(.) is r-regular (cf. Prakasa Rao (1996)). This expression motivates the following estimator

for f (d)(x) :

f̂ (d)s (x) =
∑
k∈Ns

âs,kϕs,k(x)(4. 5)

where

âs,k =
(−1)d

n

n∑
i=1

ϕ
(d)
s,k(Yi).

Note that the estimator defined above reduces to the density estimator given in (4.1) for

d = 0. We now rewrite the expression for the estimator f̂
(d)
s (x) in a slightly different form.

Note that

f̂ (d)s (x) =
∑
k∈Ns

âs,kϕs,k(x)(4. 6)

=
∑
k∈Ns

[
(−1)d

n

n∑
i=1

ϕ
(d)
s,k(Yi)]ϕs,k(x)

=
(−1)d

n

n∑
i=1

∑
k∈Ns

ϕ
(d)
s,k(Yi)ϕs,k(x)
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=
(−1)d

n

n∑
i=1

∑
k∈Ns

2(s/2)+dsϕ(d)(2sYi − k)2s/2ϕ(2sx− k)

=
(−1)d

n

n∑
i=1

[
∑
k∈Ns

ϕ(d)(2sYi − k)ϕ(2sx− k)]2s+ds

=
(−1)d

n

n∑
i=1

K(d)(2sYi, 2
sx)2s+ds

=
(−1)d

n

n∑
i=1

K(d)
s (Yi, x)

where

Ks(x, y) = 2s K(2sx, 2sy)

and

K(x, y) =
∑
k∈Ns

ϕ(x− k)ϕ(y − k).

Here K
(d)
s (x, y) denotes the d-th partial derivative of Ks(x, y) with respect to x.

5 Estimation of the wavelet coefficients

Consider the Garch-type model S = σ2Z as described earlier. Suppose the random variable

Z has the probability density function

fZ(z) =
1

(ν − 1)!
(− log z)ν−1, 0 ≤ z ≤ 1

where ν is a known positive integer. It is easy to see that, if ν = 1, then the density fz is

the standard uniform density function and in general the FZ is the density of Πν
i=1Ui where

U1, . . . , Uν are i.i.d. random variables with standard uniform distribution.

We will now consider the problem of estimation of the first derivative of the density fσ2

hereafter for simplicity based on i.i.d. observations on the random variable S. Similar results

can be obtained for the estimation of the d-th derivative of the density fσ2 for d ≥ 1. Let N

be an integer such that N > 10 − ν and ϕ and ψ be the scaling function and the primary

wavelet function. Suppose the support of ϕ and the support of the function ψ are contained

in the interval [1−N,N ] and the functions ϕ and ψ are in class Cν+1. Let

ϕj,k(x) = 2j/2ϕ(2jx− k)
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and

ψj,k(x) = 2j/2ψ(2jx− k).

Under these conditions, there exists an integer τ such that 2τ > 2N and the a family

of functions {ϕj,k, k = 0, . . . , 2j − 1;ψj,k, j ∈ N0 − 0, . . . , τ − 1, k = 0, . . . , 2j − 1} is an

orthonormal basis of L2([0, 1]) (cf. Cohen et al. (1993)). For any integer ℓ ≥ τ and h ∈
L2([0, 1]), we can expand the function h as

h(x) =
2ℓ−1∑
k=0

αℓ,kϕℓ,k(x) +
∞∑
j=ℓ

2ℓ−1∑
k=0

βj,kψj,k(x)

where αj,k and βj,k are the wavelet coefficients of h given by

αj,k =

∫ 1

0
h(x)ϕj,k(x)dx

and

βj,k =

∫ 1

0
h(x)ψj,k(x)dx.

We will first state few lemmas which will be used in the sequel.

Lemma 5.1: For any positive integer k and any function h ∈ Ck[0, 1], let

G(h)(x) = −xh′(x)

and

Gk(h)(x) = G(Gk−1(h))(x).

Define

T (h)(x) = (xh(x))′; Tk(h)(x) = T (Tk−1(h))(x), 0 ≤ x ≤ 1.

Then

(i)fσ2(x) = Gν(fS)(x), 0 ≤ x ≤ 1;

and

(ii)for any h ∈ C[0, 1], ∫ 1

0
f2σ(x)h(x)dx =

∫ 1

0
fS(x)Tν(h)(x)dx.

For a proof of this lemma, see Chesneau (2013).
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Since the derivative f ′σ2 is assumed to be square integrable on [0, 1], we can expand using

the wavelet basis {ϕjk}. Let

aj,k =

∫ 1

0
f ′σ2(x)ϕjk(x)dx, j ≥ τ, k = 0, . . . , 2j − 1.

Following the assumptions made on the wavelet basis and the density function fσ2 , it follows

that

aj,k =

∫ 1

0
f ′σ2(x)ϕj,k(x)dx

= −
∫ 1

0
fσ2(x)ϕ′j,k(x)dx

= −
∫ 1

0
fS(x)Tν(ϕ

′
j,k)(x)dx (by Lemma 5.1)

= −E[Tν(ϕ
′
j,k)(S)]).

In view of the above relation, we can estimate the coefficient aj,k by

âj,k =
1

n

n∑
i=1

Tν(ϕ
′
j,k)(Si)(5. 1)

and we can estimate the the coefficient bj,k by

b̂j,k =
1

n

n∑
i=1

Tν(ψ
′
j,k)(Si).(5. 2)

This method of estimation follows the ideas developed in Abbaszadeh et al. (2012).

Let M > 0, s > 0, p ≥ 1 and r ≥ 1. Let Bs
p,r(M) be the class of functions h such that

there exists a constantM∗ > 0 (depending onM) such that the associated wavelet coefficients

satisfy the condition

2
τ( 1

2
− 1

p
)
(
2τ−1∑
k=0

|ατ,k|p)1/p + [
∞∑
j=τ

(2
j(s+ 1

2
− 1

p
)
(
2j−1∑
k=0

|βj,k|p)
1
p )r)]

1
r ≤M∗.

Such a class of functions is called the Besov Ball with smoothness parameters and norm

parameters p and r.

Suppose that f ′σ2 ∈ Bs
p,r(M) with p ≥ 2. Define the linear estimator of f ′σ2 by

f̂ ′(x) =
2j0−1∑
k=0

âj0,kϕj0,k(x), x ∈ [0, 1](5. 3)
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where âj,k is as defined in (5.1) and j0 is an integer which will be chosen later. Discussion on

such linear estimators for density function is given in Prakasa Rao (1983,1996) and a survey

on such estimators for various density models is given in Chaubey et al. (2011). Let us also

define the thresholding estimator of f ′σ2 by

f̃ ′(x) =
2τ−1∑
k=0

âτ,kϕτ,k(x) +
j1∑
j=τ

2j−1∑
k=0

b̂j,kI[|b̂j,k| ≥ κλj ]ψj,k(x), x ∈ [0, 1](5. 4)

where âτ,k is as defined by (5.1), b̂j,k is as defined by (5.2), j1 is the integer satisfying

1

2
(
n

log n
)1/(2(ν+1)+1) < 2j1 ≤ (

n

log n
)1/(2(ν+1)+1),

λj = 2(ν+1)j

√
log n

n

and κ is a constant to be chosen. Here I[A] denotes the indicator function for the set A.

The thresholding estimator takes into account the contribution of large unknown wavelet

coefficients of f ′σ2 in the wavelet expansion of f ′σ2 . Construction of such estimators for the

estimation of a probability density were first discussed in Donoho et al. (1996). Chaubey et

al. (2013) study similar estimators for density under multiplicative censoring.

We now obtain upper bounds on the integrated mean square error for the estimators f̂ ′

and f̃ ′ of f ′σ2 .

Theorem 5.1: Suppose that f ′σ2 ∈ Bs
p,r(M) for some s > 0, p ≥ 2 and r ≥ 1. Let f̂ ′ be as

defined by (5.3)and j0 be an integer such that

1

2
n1/(2s+2(ν+1)+1) < 2j0 ≤ n1/(2s+2(ν+1)+1).

Then there exists a constant C > 0 such that

E[

∫ 1

0
(f̂ ′(x)− f ′σ2(x))2dx] ≤ Cn−2s/(2s+2(ν+1)+1).

Theorem 5.2: Suppose that f ′σ2 ∈ Bs
p,r(M) for some s > 0, p ≥ 2 and r ≥ 1 or 1 ≤ p < 2

and s > 2(ν+1)+1
p .Let f̃ ′ be as defined by (5.4). Then there exists a constant C > 0 such that

E[

∫ 1

0
(f̃ ′(x)− f ′σ2(x))2dx] ≤ C(

log n

n
)2s/(2s+2(ν+1)+1).
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6 Proofs of Theorem 5.1 and Theorem 5.2

Since the proofs of Theorems 5.1 and 5.2 are similar to those in Cheneau (2013) and are

simpler due to the i.i.d. nature of the observations on the random variable S, we only sketch

them. We will first prove another lemma.

Lemma 6.1: For any integer j ≥ τ and k ∈ {0, . . . , 2j − 1}, let

aj,k =

∫ 1

0
ϕj,k(x)f

′
σ2(x)dx

and define the operator T as given earlier, that is, for any function h ∈ Cℓ[0, 1],

T (h)(x) = (xh(x))′.

Then there exist a constant C > 0 depending on ν and the wavelet basis such that

(i)E(Tν(ϕ
′
j,k)(S1)) = −aj,k;

(ii)E[(Tν(ϕ
′
j,k)(S1))

2] ≤ C22(ν+1)j ;

and

V ar[
n∑

i=1

Tν(ϕ
′
j,k)(S1) ≤ nC22(ν+1)j .

Similar results hold for the function ψ and the corresponding wavelet coefficients bj,k.

Proof : Note that, for any u ∈ {0, . . . , ν}, the function ϕ
(u)
j,k (x), the u-th derivative of the

function ϕj,k at x, is given by

ϕ
(u)
j,k (x) = 2(2u+1)j/2ϕ(u)(2jx− k).

Following the computations in Proposition 6.1 of Cheneau (2013), it is easy to check that

sup
0≤x≤1

|Tν(ϕ′j,k)(x)| ≤ C2(2(ν+1)+1)j/2

for some constant C > 0 depending on ν and the wavelet basis. Since the support of the

random variable S1 is bounded, it can be checked that there exists a constant C > 0 such

that

E[(Tν(ϕ
′
j,k)(S1))

2] ≤ C22(ν+1)j

and

V ar[Tν(ϕ
′
j,k)(S1)] ≤ C22(ν+1)j .
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Hence

V ar(
n∑

i=1

Tν(ϕ
′
j,k)(Si)) ≤ Cn22(ν+1)j .

As a consequence of Lemma 6.1, the following upper bounds can be obtained for the

estimators âj,k of wavelet coefficients aj,k. There exists a constant C > 0 depending on ν and

the wavelet basis such that, for any j ≥ τ and k ∈ {0, . . . , 2j − 1},

E(âj,k − aj,k)
2 ≤ Cn−122(ν+1)j(6. 1)

and

E(âj,k − aj,k)
4 ≤ Cn−12(4(ν+1)+1)j .(6. 2)

For any j ∈ {τ, . . . , j1} and k ∈ {0, . . . , 2j − 1}, consider the wavelet coefficients bj,k and the

corresponding estimators b̂j,k as defined earlier. Define λj = 2(ν+1)j( lognn )1/2. Let

Ui = Tν(ψ
′
j,k)(Si)− bj,k, i = 1, . . . , n.

The sequence Ui, 1 ≤ i ≤ n is a sequence of mean zero independent random variables such

that

|Ui| ≤ C2(2(ν+1)+1)j/2, 1 ≤ i ≤ n

where C is a constant depending on the wavelet basis. Applying Bernstein’s inequality or

Hoeffding’s inequality for bounded independent random variables (cf. Lin and Bai (2010),

p.74), it follows that

P (|b̂j,k − bj,k| ≥ κλj/2) = P (
n∑

i=1

Ui ≥ nκλj/2)

≤ 2 exp{−n2κ2λ2j/8nC22(2(ν+1)+1)j}

= 2 exp{−n log n κ2/(8C2 2j)}.

Proof of Theorem 5.1: Observe that, for any x ∈ [0, 1],

f̂ ′(x)− f ′σ2(x) =
2j0−1∑
k=0

(âj,k − aj,k)ϕj,k(x)−
∞∑

j=j0

2j−1∑
k=0

bj,kψj,k

and hence

E[

∫ 1

0
(f̂ ′(x)− f ′σ2(x))2dx] =

2j0−1∑
k=0

E[(âj,k − aj,k)
2] +

∞∑
j=j0

2j−1∑
k=0

b2j,k

14



by the orthonormality of the wavelet basis. In view of inequality (6.1), we get that

2j0−1)∑
k=0

E[(âj,k − aj,k)
2] ≤ C2j0(2(ν+1)+1)n−1 ≤ Cn−2s/(2s+(2(ν+1)+1).

Since p ≥ 2, it follows that Bs
p,r(M) ⊂ Bs

2,∞(M), and hence

∞∑
j=j0

2j−1∑
k=0

b2j,k ≤ C2−2j0s ≤ Cn−2s/(2s+(2(ν+1)+1).

Therefore

E[

∫ 1

0
(f̂ ′(x)− f ′σ2(x))2dx] ≤ Cn−2s/(2s+(2(ν+1)+1).

Proof of Theorem 5.2: Following the notation used earlier, we can expand the function f ′σ2(x),

using the wavelet basis defined earlier, as

f ′σ2(x) =
2τ−1∑
k=0

aj,kϕτ,k(x) +
∞∑
j=τ

2j−1∑
k=0

bj,kψj,k(x), 0 ≤ x ≤ 1

and hence

f̃ ′(x)−f ′σ2(x) =
2τ−1∑
k=0

(âj,k−aj,k)ϕτ,k(x)+
j1∑
j=τ

2j−1∑
k=0

(b̂j,kI[|b̂j,k| > κλj ]−bj,k)ψj,k(x)−
∞∑

j=j1+1

2j−1∑
k=0

bj,kψj,k(x).

Since the wavelet basis is an orthonormal basis of L2[0, 1], it follows that

E[

∫ 1

0
(f̃ ′(x)− f ′σ2(x))2dx] = R1 +R2 +R3

where

R1 =
2τ−1∑
k=0

E[(âj,k − aj,k)
2],

R2 =
j1∑
j=τ

2j−1∑
k=0

E[(b̂j,kI[|b̂j,k| > κλj ]− bj,k)
2],

and

R3 =
∞∑

j=j1+1

2j−1∑
k=0

b2j,k.

Following arguments given in Chesneau (2013), which are much easier here due to the i.i.d.

structure for the random sequence {Si, i ≥ 1}, it can be shown that

R1 ≤ C(
log n

n
)2s/(2s+2(ν+1)+1)
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R2 ≤ C(
log n

n
)2s/(2s+2(ν+1)+1)

and

R3 ≤ C(
log n

n
)2s/(2s+2(ν+1)+1).

Hence

E[

∫ 1

0
(f̃ ′(x)− f ′σ2(x))2dx] ≤ C(

log n

n
)2s/(2s+2(ν+1)+1).

Remarks : We have obtained upper bounds for the integrated mean square error for the

linear and threshold estimators of the derivative of the density of fσ2 . The results can be

easily extended to the d-th derivative of the density by analogous arguments for d ≥ 1 and

the bounds are obtained by replacing the term ν+1 by ν+d throughout the calculations. We

can also get bounds analogous to those given above for the integrated mean squared error for

the adaptive as well as linear estimators for the derivative of the density in case the process

{Si, i ≥ 1} is exponentially strong mixing as in Chestneau (2013). The bounds obtained in

Chestneau (2013) will continue to hold for the d-th derivative of fσ2 by replacing ν by ν + d

in his results. We are omitting the details as the arguments are similar for proving these

results. As has been pointed out by Chesneau (2013), upper bound for the integrated mean

square of the threshold estimator is sharp in the sense that it is close to the corresponding

bound for the linear wavelet estimator.
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