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Abstract

The statistical matching problem involves the integration of multiple datasets

where some variables are not observed jointly. This missing data pattern leaves

most statistical models unidentifiable. Statistical inference is still possible when

operating under the framework of partially identified models, where the goal is to

bound the parameters rather than to estimate them precisely. In many matching

problems, developing feasible bounds on the parameters is equivalent to finding

the set of positive-definite completions of a partially specified covariance matrix.

Existing methods for characterising the set of possible completions do not extend

to high-dimensional problems. We propose a Gibbs sampler to draw from the

set of possible completions. The variation in the observed samples gives an

estimate of the feasible region of the parameters. The Gibbs sampler extends

easily to high-dimensional statistical matching problems.
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1. Introduction

The statistical matching problem involves the integration of multiple datasets

where we have a set of variables common to all datasets, and other variables

which only appear in some datasets. In the simplest terms, we have two samples

A and B of nA and nB independent observations, respectively, from the same5

population. In sample A we have measurements on sets of variables X and Y ,

and in sample B we have observations on variables X and Z. Our objective is

to recover the joint distribution function f(x,y, z) from the lower dimensional

datasets. The statistical matching problem is a special class of a missing data

problem, where the defining characteristic is that we have no joint observations10

of Y and Z.

We often assume that the joint distribution function belongs to some para-

metric family {f(x,y, z;θ) : θ ∈ Ω}. The objective is to perform statistical

inference on the parameter θ. Because of the missing data structure in the

statistical matching scenario some of the parameters may be unidentifiable.15

Statistical inference is still possible if the model is viewed as a partially iden-

tified model. The concept of partially identified models stems from the belief

that identification is not a simple binary issue. In a partially identified model,

the range of values that the parameter θ can take while leaving the observed

data likelihood function unchanged is some non-trivial set. Informally, given20

an infinite data set, under an identifiable model we can recover the true value

of the parameters. In a partially identified model, given an infinite data set,

we are limited to being able to restrict the parameters to some feasible set. In

a partially identified model, some elements of θ may be point-wise identifiable

while others are only partially identifiable.25

In the statistical matching problem, the partially identified parameters are

often elements of a covariance matrix. It is typical to have all elements of the

covariance matrix identifiable, other than the values that require joint obser-

vations on Y and Z. In this setting, estimating the identified set corresponds

to determining the set of positive-definite completions of a partially specified30
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covariance matrix. Existing methods for doing so are not applicable when both

Y and Z and multivariate (D’Orazio, 2015). We take a new sampling based

approach to characterising the identified set which is easily applicable to high-

dimensional problems. We propose a Gibbs sampler to draw values uniformly

from the identified set of covariance parameters. The range of the sampled35

values gives a direct measure of the uncertainty attached to the partially iden-

tified parameters. The Gibbs sampler extends the range of datasets that can be

analysed using the statistical matching methodology.

2. The statistical matching problem

A standard mathematical description of the statistical matching problem

is as follows (Rässler, 2002). Let X, Y , Z be multivariate random variables

with joint density function f(x,y, z;θ). Assume we have a sample of nA i.i.d

observations distributed according to f(x,y, z;θ), which we will call file A, and

another independent sample of size nB from f(x,y, z;θ), which we will call

file B. Let sAi be a row vector representing the ith observation in file A for

i = 1, . . . , nA. Similarly, let sBj be a row vector representing the jth observation

in file B for j = 1, . . . , nB . The ith observation in file A can be written as

sAi = (sAiX , s
A
iY , s

A
iZ), where sAiX is a row vector representing the value of X

and sAiY , sAiZ are row vectors representing the values of Y and Z, respectively.

We can also form an identical partition sBj = (sBjX , s
B
jY , s

B
jZ) for observation

j in file B. Let the observations in file A have the Z values missing and the

observations in file B have the Y values missing. Table 1 represents the data

matrix in the statistical matching problem. We can consider inference in the

statistical matching problem to be inference under a partially identified model.

We call a model partially identified if the observed data likelihood is flat for

a range of the parameters (Tamer, 2010). The identified set for a parameter

is the range of values it can take without altering the observed data likelihood

function. We use the notation Θ(θj) to denote the identfied set for parameter

θj . When analysing a partially identified model we are interested in forming
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a set of plausible values for the non point-identified parameters. For example,

assume we have observations (X,Y, Z)T from a trivariate normal distribution,

so that the distribution function is

f(x, y, z) = φ3

x, y, z;µ =


µX

µY

µZ

 ,Σ =


σXX σXY σXZ

σY X σY Y σY Z

σZX σZY σZZ


 ,

and the standard stitching problem applies. The likelihood function formed from

the observed data will not depend on σY Z , and so σY Z can be considered to be

a partially identified parameter. All the parameters are point-wise identifiable

other than σY Z . Even though we do not have any data to estimate σY Z from, as

we do not observe Y and Z jointly, our modelling assumptions induce non-trivial

bounds on the parameter. Given the other parameters, the possible values that

σY Z can take are limited to those which result in a positive-definite covariance

matrix for the underlying trivariate normal distribution. The identified set for

the parameter σY Z is given by

Θ(σY Z) =

σY Z :


σXX σXY σXZ

σY X σY Y σY Z

σZX σZY σZZ

 is positive-definite

 .

In this example we will obtain an interval for σY Z which is a function of the40

other covariance parameters (Rässler, 2002). When estimating parameters from

data, consistent estimators for the identified parameters allow us to construct

a consistent estimator of the identified set. In the trivariate normal example

above, we could use the maximum likelihood estimates for the identifiable pa-

rameters σXX , σXY , σY Y , σZZ and σXZ . This estimated identified set can be45

used to gauge the amount of uncertainty surrounding the partially identified

parameters (Conti et al., 2013).

Characterising the identified set has been a difficult problem in statistical

matching. Most investigations only consider multivariate normal data and that

will be our focus for now. We first discuss previous work on statistical matching50

before presenting our Gibbs sampler. We conclude by investigating extensions
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to skew normal data.

3. Matching in the Multivariate Normal Case

We now assume that X,Y and Z have a multivariate normal distribution

with mean µ and covariance matrix Σ. The joint distribution can be represented

as 
X

Y

Z

 ∼ Nd

µ =


µX

µY

µZ

 ,Σ =


ΣXX ΣXY ΣXZ

ΣY X ΣY Y ΣY Z

ΣZX ΣZY ΣZZ


 ,

where we have applied an obvious partition of the parameters. Given the other

parameters in the model, the identified set for ΣY Z is

Θ(ΣY Z) =

ΣY Z :


ΣXX ΣXY ΣXZ

ΣY X ΣY Y ΣY Z

ΣZX ΣZY ΣZZ

 is positive-definite

 . (1)

We can expand the matrices ΣY Z , ΣY X and ΣXZ as follows

ΣY Z =


σY1Z1

σY1Z2
. . . σY1ZdZ

σY2Z1
σY2Z2

. . . σY2ZdZ

...
... . . .

...

σYdY
Z1

σYdY
Z2

. . . σYdY
ZdZ

 ,

ΣY X =


σY1X1

σY1X2
. . . σY1XdX

σY2X1
σY2X2

. . . σY2XdX

...
... . . .

...

σYdY
X1 σYdY

X2 . . . σYdY
XdX

 ,

ΣXZ =


σX1Z1 σX1Z2 . . . σX1ZdZ

σX2Z1
σX2Z2

. . . σX2ZdZ

...
... . . .

...

σXdX
Z1

σXdX
Z2

. . . σXdX
ZdZ

 .
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Here σXiZj denotes the covariance between Xi and Zj . Finding an explicit

expression for values of the matrix ΣY Z that satisfy the condition in (1) is an55

open problem (Rässler & Kiels, 2009). For multivariate X, Y and univariate

Z, the identified set can be shown to be the interior of an ellipsoid.

Assuming without loss of generality Σ is a correlation matrix, we wish to

find the identified set of correlations. For univariate Z, ΣY Z is a column vector

and the ellipsoid is governed by the equation(
ΣY Z −ΣY XΣ−1

XXΣXZ

)T
A
(
ΣY Z −ΣY XΣ−1

XXΣXZ

)
= 1, (2)

where A = (1 − ΣZXΣ−1
XXΣXZ)−1·(ΣY Y − ΣY XΣXX

−1ΣXY )−1 (Rässler &

Kiels, 2009). In the case of univariate Y and Z, as considered by Moriarity &

Scheuren (2001), this reduces to the interval [C −
√
W,C +

√
W ], where

C = ΣY XΣ−1
XXΣXZ , (3)

W =
(
1−ΣZXΣ−1

XXΣXZ

)
·
(
1−ΣY XΣ−1

XXΣXY

)
. (4)

A simple rescaling of these formulas gives the identified set of the covariances.

The true values of the identifiable parameters can be substituted into these

expressions to determine the allowable range for the partially identified param-60

eter ΣY Z . This represents the absolute limit of the possible knowledge we can

obtain about the joint relationship of Y and Z from our data (D’Orazio et al.,

2006). When estimating parameters from data, we will assume that we have

some consistent estimators of the model parameters that can be used to obtain

a consistent estimate of the identified set. As there are no closed form expres-65

sions for the identified set when both Y and Z are multivariate, this direct

approach to estimating the identified set cannot be used. When Y and Z are

both multivariate, numerical methods have been proposed for finding admissible

completions of the covariance matrix. These methods involve grid search tech-

niques which can be very inefficient in high dimensions (Moriarity & Scheuren,70

2001; D’Orazio et al., 2006).

We propose an alternative sampling based approach to characterising the

identified set. We propose using a Gibbs sampler to draw values uniformly from
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the identified set. The range of observed values can then be used to infer the

amount of uncertainty attached to each parameter.75

The desire to fit a joint model in statistical matching is often to impute

the missing data for downstream analyses. Multiple imputation is desirable to

reflect the uncertainty introduced by the missing data. Initial work in this vein

by Kadane (1978) and Rubin (1986) has been extended by Moriarity & Scheuren

(2003) and Rässler (2003). These multiple imputation procedures often require80

the analyst to specify a range of values in the identified set. The multiple

imputation procedure is thus somewhat ad-hoc, as there is no guarantee that

the range of imputed datasets fully capture the uncertainty over the partially

identified parameters.

For multivariate normal data, the statistical matching problem reduces to85

finding positive-definite completions of a partially specified covariance matrix.

Finding the range of plausible values is important to accurately gauge the

amount of uncertainty introduced into the statistical analysis by the missing

data (Rodgers, 1984). Existing methods for characterising the identified set

rely on mathematical formulae which have not been extended to problems with90

both multivariate Y and Z. We will develop a Gibbs sampler that generalises

easily to high-dimensional problems and simultaneously addresses the need for

a principled method to generate values from the identified set.

4. Methods

Gibbs sampling is a powerful tool for sampling from constrained sets (Gelfand95

et al., 1992). Finding values that lie within a complex high-dimensional re-

stricted set can be difficult. The full conditionals are often much easier to deal

with as we only have to consider the feasible range of a single parameter. For the

statistical matching problem, the full conditionals reduce to the issue of finding

the identified interval for a single partially identified parameter. In other terms,100

the full conditionals are developed from a covariance matrix where only a single

term is unspecified. If we wish to sample uniformly from the identified set, we
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will simply sample uniformly from the identified interval in each conditional

distribution. Again without loss of generality, we assume that Σ is a correlation

matrix.105

Before stating the full conditional distributions we introduce some notations

and definitions. Let σ
(−)
YrZs

denote all the elements of ΣY Z other than σYrZs for

r ∈ {1, . . . , dY } and s ∈ {1, . . . , dZ}. Given r and s let

X̃ = (X1, X2, . . . , XdX
, Y1, . . . , Yr−1, Yr+1, YdY

, Z1, . . . , Zs−1, Zs+1, ZdZ
).

The dummy random variable X̃ represents all variables other than Yr and Zs.

We also define Ỹ = Yr and Z̃ = Zs. We let ΣX̃X̃ denote the correlation matrix of

X̃. We also let ΣỸ X̃ denote the row vector containing the correlations between

Ỹ and X̃. Finally let ΣZ̃X̃ denote the row vector containing the correlations

between X̃ and Z̃.110

For all r ∈ {1, . . . , dY } and s ∈ {1, . . . , dZ}, the full conditional distribution

is given by

p
(
σYrZs

| σ(−)
YrZs

)
∼ unif

(
C̃ −

√
W̃ , C̃ +

√
W̃
)
, (5)

where

C̃ = ΣỸ X̃Σ−1

X̃X̃
ΣX̃Z̃ , (6)

W̃ =
(

1−ΣỸ X̃Σ−1

X̃X̃
ΣX̃Ỹ

)(
1−ΣZ̃X̃Σ−1

X̃X̃
ΣX̃Z̃

)
. (7)

While the full conditionals are easy to specify and sample from, the Hammersly-

Clifford positivity condition does not apply so it is not guaranteed that the Gibbs

sampler will converge to the correct stationary distribution (Hammersly & Clif-

ford, 1971). We have to establish that the Markov chain defined by the Gibbs

sampler is irreducible. Laurent & Varvitsiotis (2014) show that the identified115

set as defined in (1) will always be a convex set. Given fixed values for the

other parameters, the identified set for ΣY Z can be considered the intersection

of the cone of positive-definite matrices with a series of affine subspaces. As the

intersection of convex sets is also convex, the identified set will be a convex set.
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As a consequence, the Markov chain is irreducible, and the Gibbs sampler will120

converge to the correct stationary distribution.

The Gibbs sampler requires an initial positive-definite completion of the

covariance matrix. We recommend setting ΣY Z = ΣY XΣ−1
XXΣXZ , which al-

ways provides a positive-definite completion provided that one exists (Grone

et al., 1984). Determining an appropriate number of iterations to run the Gibbs125

sampler is a notoriously difficult problem (Cowles & Carlin, 1996). Roberts

& Rosenthal (1998) consider the convergence properties of Gibbs samplers for

uniform distributions on bounded regions. They establish that if the boundary

satisfies a smoothness condition, the Gibbs sampler will be uniformly ergodic.

If we are willing to assume a smoothness condition on the boundary of the iden-130

tified set, the Gibbs sampler will not necessarily break down in high dimensions.

5. Examples

5.1. Low-dimensional problem

To test the performance of the Gibbs sampling approach, we sampled from

the identified set of a covariance matrix where dX = 2, dY = 2 and dZ = 1. In

this scenario we can use the exact ellipsoid formula to calculate the identified

set. The covariance matrix Σ was specified to have a compound symmetry

structure with correlation 0.75, thus having the form

Σ =



X1 X2 Y1 Y2 Z1

X1 1.00 0.75 0.75 0.75 0.75

X2 0.75 1.00 0.75 0.75 0.75

Y1 0.75 0.75 1.00 0.75 −

Y2 0.75 0.75 0.75 1.00 −

Z1 0.75 0.75 − − 1.00


.

We applied the Gibbs sampler to explore the range of possible values for σY1Z1

and σY2Z1 . We used five thousand burn in iterations, and took twenty thousand135

samples. Figure 1 compares the output of the Gibbs sampler to the correct
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solution. This true identified set was calculated using the ellipsoid formula (2).

The dashed ellipse in (a) and (b) represents the boundary of the true identified

set. In (a) we plot the Gibbs samples and see that they cover the identified set

uniformly. In (b) we plot a shaded polygon determined by the convex hull of140

the samples and see that we have identified the boundaries of the space. Figure

2 shows trace plots and running mean plots to assess convergence of the Markov

chain (Cowles & Carlin, 1996). There is no evidence of poor mixing.

5.2. Multivariate Normal Model

In this example we assess the Gibbs sampler on a statistical matching prob-

lem with bivariate X,Y and Z. The generative model was a multivariate

normal distribution with parameters

µ =



0.00

0.00

0.00

0.00

0.00

0.00


, Σ =



X1 X2 Y1 Y2 Z1 Z2

X1 1.00 0.90 0.81 0.73 0.66 0.59

X2 0.90 1.00 0.90 0.81 0.73 0.66

Y1 0.81 0.90 1.00 0.90 0.81 0.73

Y2 0.73 0.81 0.90 1.00 0.90 0.81

Z1 0.66 0.73 0.81 0.90 1.00 0.90

Z2 0.59 0.66 0.73 0.81 0.90 1.00


.

The covariance matrix resembles an AR(0.9) correlation structure. We gener-145

ated nA = 10000 samples for file A and nB = 10000 samples for file B. We

estimated the identifiable parameters using maximum likelihood and then ap-

plied the Gibbs sampler. We used five thousand burn in iterations and drew fifty

thousand samples. Table 2 reports the range of the samples for each partially

identified parameter. Looking at the interval widths, we see we have different150

levels of information about each parameter. The upper bound for all parameters

is close to one, but the lower bounds range from 0.09 to 0.35. We are sure of

at least moderate correlation between Y1 and Z1 but cannot conclude the same

for Y2 and Z2. This is interesting as the true correlation between Y1 and Z1 is

the same as the true correlation between Y2 and Z2. We can at least rule out155

negative correlations for the partially identified parameters.
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To gauge the quality of our estimate of the identified set we repeated the

Gibbs sampling process using the correct values for the other covariance param-

eters instead of maximum likelihood estimates. Table 3 reports the range of the

samples for each partially identified parameter. Comparing these intervals to160

those in Table 2 we do not obtain significantly different results due to the use

of maximum likelihood estimates.

5.3. Skew-Normal Model

We now consider characterising the identified set when the observations come

from a skew normal model. We take the general definition of the skew normal165

distribution to be the unified skew normal (SUN) distribution (details in Ap-

pendix). The Gibbs technique is effective for SUN models as the SUN distribu-

tion can be expressed as the conditional distribution of a regular multivariate

normal model (Arellano-Valle & Azzalini, 2006).

Let S = (XT,Y T,ZT)T, where X,Y and Z have dimension dX , dY and

dZ respectively. Suppose that our observations come from the restricted skew

normal distribution (Pyne et al., 2009), S ∼ SUNp,1(µ,Σ,∆, 1, 0), which is a

special case of the SUN distribution (see details in Appendix). We will also

form a corresponding partition of the parameters

µ =


µX

µY

µZ

 ,Σ =


ΣXX ΣXY ΣXZ

ΣY X ΣY Y ΣY Z

ΣZX ΣZY ΣZZ

 ,∆ =


∆X

∆Y

∆Z


Under the standard statistical matching problem, the only unidentifiable pa-

rameter is again ΣY Z . Due to the underlying conditioning representation of the

SUN distribution, we face the problem of finding values of ΣY Z such that the

covariance matrix of the latent multivariate normal distribution (9) is positive-

definite. The identified set is

Θ(ΣY Z) =


ΣY Z :


1 ∆T

X ∆T
Y ∆T

Z

∆X ΣXX ΣXY ΣXZ

∆Y ΣY X ΣY Y ΣY Z

∆Z ΣZX ΣZY ΣZZ

 is positive-definite


.
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We used the Gibbs sampler to estimate the identified set in a statistical matching

problem with bivariate X, Y and Z from a joint restricted skew normal model.

The parameters of the generative model were set to

µ =



0

0

0

0

0

0


, Σ =



X1 X2 Y1 Y2 Z1 Z2

X1 2 −1 2 −2 3 −3

X2 −1 2 −2 2 −3 3

Y1 2 −2 5 −4 6 −6

Y2 −2 2 −4 5 −6 6

Z1 3 −3 6 −6 10 −9

Z2 −3 3 −6 6 −9 10


, ∆ =



1

−1

2

−2

3

−3


.

We generated nA = 10000 samples for file A and nB = 10000 samples for file B.170

The data are plotted in Figures 3 and 4.

We estimated the identifiable parameters using maximum likelihood and

then applied the Gibbs sampler to explore the identified set for ΣY Z . We use

five thousand burn in iterations and drew fifty thousand samples. Table 4 sum-

marises the output of the Gibbs sampler and Figure 5 shows a pairs plot of175

the samples. We report the observed range for each parameter. Despite the

fact that we have no joint observations of Y and Z we are able to bound the

unidentified parameters roughly within the intervals [5, 7] and [−7,−5]. The

surprising tightness of the bounds is due to the strong impact of the skewness

parameters on the covariance matrix of the underlying latent multivariate nor-180

mal distribution. We again obtained an alternative estimate of the identified

set using the true values of the identifiable parameters instead of maximum

likelihood estimates. Table 5 reports the results from this secondary run of the

sampler. The obtained intervals are very similar to those in Table 4.

6. Conclusion185

The statistical file matching problem is a data integration problem where

missing data leaves some parameters unidentifiable. When trying to fit a para-

metric model, the goal is often to characterise the identified set of the parameters
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rather than to deliver a point estimate. Principled methods to establish uncer-

tainty bounds are crucial in statistical matching problems to accurately repre-190

sent the limitations of the observed data. The objective in statistical matching

often reduces to finding positive-definite completions of a partially specified co-

variance matrix. Existing techniques for finding the set of possible completions

are not applicable to high-dimensional datasets. We propose a Gibbs sampler

that provides a simple and computationally efficient method to explore the iden-195

tified set in high-dimensional statistical matching problems.

Multiple imputation is frequently used in statistical matching to supply com-

plete datasets for downstream analyses. Existing multiple imputation proce-

dures require the user to specify a range of completed covariance matrices,

introducing subjectivity into the process. The Gibbs sampler is an automatic200

method which should facilitate more objective multiple imputation procedures.
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Rässler, S. (2003). A non-iterative Bayesian approach to statistical matching.

Statistica Neerlandica, 57 , 58–74.255

Rässler, S., & Kiels, H. (2009). How useful are uncertainty bounds? some recent

theory with an application to Rubin’s causal model. In Proceedings of the 57th

Session of the International Statistical Institute.

Roberts, G. O., & Rosenthal, J. S. (1998). On convergence rates of Gibbs

samplers for uniform distributions. Annals of Applied Probability , (pp. 1291–260

1302).

Rodgers, W. L. (1984). An evaluation of statistical matching. Journal of Busi-

ness & Economic Statistics, 2 , 91–102.

Rubin, D. B. (1986). Statistical matching using file concatenation with adjusted

weights and multiple imputations. Journal of Business & Economic Statistics,265

4 , 87–94.

15



Tamer, E. (2010). Partial identification in econometrics. Annual Review of

Economics, 2 , 167–195.

7. Appendix

7.1. The SUN Distribution270

Arellano-Valle & Genton (2005) introduced the fundamental skew normal

distribution (FUSN). A random variable S is said to have the FUSNp,q dis-

tribution if S
d
= [V |U > 0], where V is a p dimensional multivariate normal

random vector, and U is a q dimensional random vector defined on the same

probability space. The probability density function of S can be expressed as

f(s;µ; Σ) = K−1
q φp(s;µ,Σ)Qq(s), (8)

where Kq = E (Qq(V )) = P (U > 0) is a normalising constant and Qq(s) =

P (U > 0|V = s). The term Qq(s) can be interpreted as a skewing function.

This is a very general formulation which encompasses the vast majority of skew

normal distributions in the literature. An important special case of the FUSN

family is the unified skew normal (SUN) distribution, which is also known as the

closed skew normal (CSN) distribution or the hierarchical skew normal (HSN)

distribution; see Arellano-Valle & Azzalini (2006). In the SUN family, we assume

that U and V have a joint multivariate normal distribution. We say that

S ∼ SUNp,q(µ,Σ,∆,Γ, τ ) if S
d
= [V |U > 0] for q-dimensional U and p-

dimensional V , whereU
V

 ∼ Np+q

τ
µ

 ,

Γ ∆T

∆ Σ

 . (9)

For the simulation in Section 5.3, we focus on one of the most commonly used for-

mulations of the skew normal distribution - the restricted skew normal distribu-

tion - as adopted by Pyne et al. (2009) and equivalent to Azzalini & Dalla Valle

(1996), Branco & Dey (2001), and Lachos et al. (2010); see Lee & McLachlan

(2013). This corresponds to a highly specialised form of the SUN distribution,275

where q = 1, τ = 0, and Γ = 1.
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X Y Z

sA1 sA1X sA1Y -

sA2 sA2X sA2Y -

...
...

...
...

sAnA
sAnAX sAnAY -

sB1 sB1X - sB1Z

sB2 sB2X - sB2Z
...

...
...

...

sBnB
sBnBX - sBnBZ

Table 1: Missing data structure in the canonical statistical matching problem. Observed

dimensions for each observation have been shaded.

0.3 0.5 0.7 0.9

0.
4

0.
6

0.
8

1.
0

(a)

σY1Z1

σ Y
2Z

1

0.3 0.5 0.7 0.9

0.
4

0.
6

0.
8

1.
0

(b)

σY1Z1

σ Y
2Z

1

Figure 1: (a) Draws from the Gibbs sampler as black points. (b) The solid line denotes the

convex hull of the Gibbs samples. The dashed ellipse shows the border of the true identified

set in both (a) and (b).
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True Value Lower Bound Upper Bound

σY1Z1 0.810 0.354 0.950

σY2Z1 0.729 0.188 0.980

σY2Z1
0.900 0.264 0.925

σY2Z2
0.810 0.093 0.972

Table 2: Estimates of the identified range for each parameter using maximum likelihood

estimates for the identifiable parameters.

Parameter True Value Lower Bound Upper Bound

σY1Z1
0.810 0.359 0.952

σY1Z2 0.729 0.192 0.991

σY2Z1
0.900 0.263 0.918

σY2Z2
0.810 0.091 0.972

Table 3: Estimates of the identified range for each parameter using true values for the iden-

tifiable parameters.

Parameter True Value Lower Bound Upper Bound

σY1Z1
6 5.094 7.050

σY1Z2 -6 -6.940 -4.962

σY2Z1
-6 -7.060 -5.056

σY2Z2
6 4.922 6.950

Table 4: Estimates of the identified range for each parameter using maximum likelihood

estimates for the identifiable parameters.

Parameter True Value Lower Bound Upper Bound

σY1Z1
6 5.003 6.996

σY1Z2 -6 -6.997 -5.004

σY2Z1
-6 -6.998 -5.006

σY2Z2
6 5.001 6.998

Table 5: Estimates of the identified range using true values for the identifiable parameters.
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Figure 2: Convergence diagnostics

19



X1

−6 −4 −2 0 2 4 −8 −6 −4 −2 0 2

−
4

−
2

0
2

4

−
6

−
4

−
2

0
2

4

X2

Y1

−
2

0
2

4
6

8

−4 −2 0 2 4

−
8

−
6

−
4

−
2

0
2

−2 0 2 4 6 8

Y2

Figure 3: Samples in file A of skew normal example.
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Figure 4: Samples in file B of skew normal example.
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Figure 5: Output of the Gibbs sampler from the skew normal example
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