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1 Introduction

Gompertz distribution is a continuous prbability distribution named after Benjamin Gom-

pertz. It is often used to model the distribution of adult lifespans (cf. Vaupel (1986); Preston

et al. (2001); Benjamin et al. (1980) and Willemse and Koppelar (2000)). It is also used

as a mathematical model of aging processes by Brown and Forbes (1974) and for studying

the rate of aging in Economos (1982). More recently, computer scientists have used it to

model the failure rate of software codes (Ohishi et al.(2009)). In management science, Gom-

pertz distribution has been used for modeling purchase behavior with sudden ”death” as a

flexible customer lifetime model. Pollard and Valkovics (1992) discuss some properties and

applications of the Gompertz distribution.

Suppose X is a non-negative continuous random variable with Gompertz distribution

having the survival function

S(x) = exp[−a(ebx − 1)], x ≥ 0.

It is easy to check that the function S(x) satisfies the functional equation

S(x+ t)

S(t)
= [S(x)]ξ(t), x ≥ 0, t ≥ 0
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with ξ(t) = ebt. Conversely suppose X is any non-negative continuous random variable with

survival function S(.) = P (X > x) satisfying the functional equation

S(x+ t)

S(t)
= [S(x)]ξ(t), x ≥ 0, t ≥ 0(1. 1)

where ξ : [0,∞) → [0,∞). Kaminsky (1983) proved that the random variable X must then

have the Gompertz distribution with the survival function

S(x) = exp[−a(ebx − 1)], x ≥ 0(1. 2)

for some constants a > 0 and b > 0 and the function ξ(t) = ebt, t ≥ 0. Marshall and Olkin

(2007) obtained characterizations of distributions through coincidences of semiparametric

families and these characterization results include a characterization of the Gompertz dis-

tribution. Marshall and Olkin (2015) derived a bivariate Gompertz-Makeham distribution

based on a bivariate version of the functional equation (1.1). Kolev (2016) obtained charac-

terizations of the class of bivariate Gompertz distributions introduced by Marshall and Olkin

(2015). The following theorem, as given by Kolev (2016), is due to Kaminsky (1983)(cf.

Marshall and Olkin (2007)).

Theorem 1.1: Suppose that X is an absolutely continuous non-negative random variable

such that its survival function S(x) > 0 for all x > 0. Then the function S(.) satisfies the

equation (1.1) for some b > 0 and for some function ξ(.) not depending on x if and only if

either

(i) the function S(x) = e−bx and ξ(t) ≡ 1; or

(ii) the function S(x) is the survival function of the Gompertz distribution given by the

equation (1.2) and ξ(t) = ebt; or

(iii) the function S(x) = exp[a(e−bx − 1)] and ξ(t) = e−bt.

The exponential and the Gompertz survival functions are solutions of the Kaminsky

functional equation given by (1.1). The negative Gompertz distribution, given by part (iii)

in Theorem 1.1, is also a solution of the functional equation (1.1) but the corresponding

function S(x) does not give a proper probability distribution function as pointed out by

Kolev (2016).
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2 Preliminaries

Let X be a non-negative absolutely continuous random variable with the survival function

S(.). The equation (1.1) can be written in an alternative form

P (X > x+ t|X > t) = [P (X > x)]ξ(t), x ≥ 0, t ≥ 0.(2. 1)

If the function ξ(t) ≡ 1, then the equation (2.1) characterizes the exponential distribution as

is well known and pointed out in Theorem 1.1. This is also known as the ”lack of memory”

property of the exponential distribution. It is known the exponential distribution has the

”strong” lack of memory property in the following sense: Suppose a random variable X has

the exponential distribution. Then, for any non-negative random variable Y indepenedent

of X,

P (X > Y + x|X > Y ) = P (X > x), x ≥ 0.(2. 2)

It is known that, if the equation (2.2) holds for any two independent non-negative random

variables X and Y, then the random variable X will have an expoential distribution under

some conditions (cf. Theorem 2.5.1, Ramachandran and Lau(1991), p.40). The equation

(2.2) leads to what is known as ”Integrated Cauchy Functional Equation”. For an extensive

discussion on such equations and their applications to characterizations of probability dis-

tributions, see Ramachandran and Lau (1991) and Rao and Shanbhag (1994). Let G(.) be

the distribution function of the random variable Y in the equation (2.2). Since the random

variables X and Y are independent, the equation (2.2) reduces to∫ ∞

0
S(x+ y)G(dy) = c S(x), x ≥ 0(2. 3)

where c = P (X > Y ) or equivalently∫ ∞

0
[S(x+ y)− S(x)S(y)]G(dy) = 0, x ≥ 0.(2. 4)

The following result holds (cf. Theorem 2.5.1, Lau and Ramachandran (1991)).

Theorem 2.1: Suppose that G(0) < c < 1. Let λ > 0 be defined by the equation∫ ∞

0
e−λyG(dy) = c(2. 5)

and let, for ρ > 0, A(ρ) = {nρ, n ≥ 1}. Then
(i) S(x) = e−λx, x ≥ 0 if the support of the distribution function G(.) is not contained in the

set A(ρ) for any ρ > 0; and
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(ii) S(x) = p(x)e−λx, x ≥ 0 where the function p(.) is right continuous and has period ρ if the

support of the distribution function G(.) is contained in the set A(ρ) for some ρ > o which

is taken to be the largest such value.

3 Main Results

In analogy with the equation which follows from the ”strong” lack of memory property of

the exponential distribution, we now consider the following functional equation

S(x+ Y )

S(Y )
= [S(x)]ξ(Y ), x ≥ 0(3. 1)

where Y is a non-negative random variable independent of the non-negative random variable

X with the survival function S(.) Our aim is to characterize the family of survival functions

S(.) and the functions ξ(.) satisfying the equation (3.1). Let R(x) = − logS(x). From the

independence of the random Variables X and Y , the equation (3.1) can be written in the

form ∫ ∞

0
[R(x+ y)−R(y)− ξ(y)R(x)]G(dy) = 0, x ≥ 0(3. 2)

Suppose that the function R(.) is differentiable with derivative R′(.). Further suppose that

differentiation under integral sign with respect to x is permitted in the equation (3.2). Then,

differentiating under the integral sign with respect to x, the equation (3.2) leads to the

equation ∫ ∞

0
[R′(x+ y)− ξ(y)R′(x)]G(dy) = 0, x ≥ 0.(3. 3)

Let x = 0 in the equation (3.3). It follows that∫ ∞

0
[R′(y)− ξ(y)R′(0)]G(dy) = 0(3. 4)

which implies that ∫ ∞

0
R′(y)G(dy) = R′(0)

∫ ∞

0
ξ(y)G(dy).(3. 5)

Applying this relation in the equation (3.3), we get that∫ ∞

0
[R′(x+ y)−R′(0) R′(x)R′(y)]G(dy) = 0, x ≥ 0(3. 6)

or equivalently ∫ ∞

0
R′(x+ y)G(dy) = c R′(x), x ≥ 0(3. 7)
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for some constant c. This is an integrated Cauchy functional equation. Suppose G(0) < 1.

Applying Theorem 2.2.4 in Ramachandran and Lau(1991), it follows that

R′(x) = p(x)eλx a.e.(3. 8)

where λ ∈ R and is uniquely determined by the equation∫ ∞

0
eλyG(dy) = 1(3. 9)

and the function p(.) satisfies p(x + y) = p(x) for all y in the support of the distribution

function G(.).

We have the following result.

Theorem 3.1: Suppose X and Y are independent non-negative random variables satisfying

the functional equation (3.1) based on a function ξ(.). Further suppose that the function the

survival function S(.) is differentiable and differentiation under integral sign is allowed in the

integral equation corresponding to the equation (1.1). Then

R′(x) = − logS(x) = p(x)e−λx, x ≥ 0(3. 10)

where λ ∈ R and is uniquely determined by the equation∫ ∞

0
eλyG(dy) = 1(3. 11)

and the function p(.) satisfies p(x + y) = p(x) for all y in the support of the distribution

function G(.).

Special cases: (i)Suppose the support of the distribution functionG is R+. then the function

p(.) is a constant, say, c and

R′(x) = ceλx, x ≥ 0(3. 12)

which implies that

R(x) = c(eλx − 1), x ≥ 0(3. 13)

where λ is given by the equation ∫ ∞

0
eλyG(dy) = 1(3. 14)
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Since the function R(x) = − logS(x) where S(.) is the survival function of a random variable

X, it is easy to see that the parameters c and λ are positive and the the distribution of the

random variable X is the Gompertz distribution with

S(x) = exp[−a(eλx − 1))], x ≥ 0(3. 15)

where a and λ are positive constants.

(ii) Suppose the functional equation (3.1) holds for a non-negative random variable Y

with distribution function G with support not equal to R. It follows, from the general results

on Cauchy functional equation that the support has to be a set which is a subset of Ad =

{nd : n ≥ 0} where d is the period of the function p(x) and

R′(x) = p(x)eλx, x ≥ 0.(3. 16)

(cf. Marsagalia and Tubilla (1975)). Note that the functional equation (3.1) reduces to

P (X > x+ nd)

P (X > nd)
= [P (X > x)]ξ(nd), n ≥ 0(3. 17)

Suppose the function ξ(t) ≡ 1. Then the above equation reduces to

P (X > x+ nd)

P (X > nd)
= P (X > x), n ≥ 0.(3. 18)

Distributions satisfying this functional equation are called distributions with periodic failure

rate and have been studied in Prakasa Rao (1997). The same class under the terminology

of ”Almost lack of memory” property have been discussed in Chukova and Dimitrov (1992).

We will now investigate similar properties of the functional equation (3.16).

Suppose that X is a non-negative random variable satisfying the functional equation

(3.17). Then

R′(x) = p(x)eλx, x ≥ 0(3. 19)

where p(.) is a non-negative periodic function with period d. Note that the function R′(.) is

the hazard rate or the failure rate of the random variable X. In particular,

R(x) = − logS(x) =

∫ x

0
p(y)eλydy, x ≥ 0(3. 20)

where p(.) is a periodic function with some period d > 0. Hence, for any 0 ≤ x ≤ d,

∫ x+nd

nd
p(y)eλydy =

∫ x

0
p(z + nd)eλ(z+nd)dz = eλnd

∫ x

0
p(z)eλzdz
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which implies that

R(x+ nd)−R(nd) = eλndR(x), 0 ≤ x ≤ d, n ≥ 0

or equivalently

− logS(x+ nd) + logS(nd) = −eλnd logS(x), 0 ≤ x ≤ d, n ≥ 0

Hence

S(x+ nd) = S(nd)[S(x)]e
λnd

, 0 ≤ x ≤ d, n ≥ 1.(3. 21)
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