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1 Introduction

If ψ and η are independent random variables, then the independence of the random variables

ψ+ η and ψ− η implies that ψ and η are normally distributed (cf. Bernstein (1941), Cramer

(1936)). This result was generalized to linear forms of independent random ariables by

Skitovich (1953, 1954) and Darmois (1953). Let ψ1, . . . , ψn be independent random variables

and let ai, 1 ≤ i ≤ n; bi, 1 ≤ i ≤ n be nonzero real numbers. Define

L1 =
n∑

j=1

ajψj and L2 =
n∑

j=1

bjψj .

Skitovich and Darmois proved independently that, if L1 and L2 are independent, then the

random variables ψj , 1 ≤ j ≤ n are normally distributed. Ramachandran (1967) extended

Skitovich and Darmois’s result to the case where the number of summands is infinite and

both the sequences {ajb−1
j , j ≥ 1} and {a−1

j bj , j ≥ 1} are bounded. Ibragimov (2013) proved

that the result will hold if at least one of the sequences {ajb−1
j , j ≥ 1}, {a−1

j bj , j ≥ 1} is

bounded.

Kagan and Székely (2016) introduced the notion of Q-independence and Q-identically

distributed random variables and proved that the classical characterization properties of

normal distribution due to Cramér (1936), Darmois-Skitovich (Darmois (1953); Skitovich
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(1953, 1954)), Marcinkiewicz (1938) and Vershik (1964) continue to hold for Q-independent

random variables. We will now characterize the family of distributions based on linear forms

of infinite sequences of random variables with Q-independence property to be defined in the

next section extending the results of Ibragimov (2013) and Ramachandran (1967).

Characterizations of probability distributions through linear forms based on finite se-

quences of random variables with Q-independence or conditional Q-independence are dis-

cussed in Prakasa Rao (2016a,b) extending the results in Kotlarski (1966, 1967), Prakasa

Rao (1968), Miller (1970), Rao (1971) and Sasvári (1986) (cf. Prakasa Rao (1992)) for

independent random variables.

2 Q-independence

Let X1, . . . , Xn be random variables and let the characteristic function of Xi be ϕi(t) for

i = 1, . . . , n. Following Kagan and Székely (2016), the collection Xi, 1 ≤ i ≤ n, is said to be

Q-independent if the joint characteristic function of (X1, . . . , Xn) can be represented as

ϕX1,...,Xn(t1, . . . , tn) ≡ E[exp(it1X1 + . . .+ itnXn)]

= Πn
j=1ϕj(tj) exp{q(t1, . . . , tn)}, t1, . . . , tn ∈ R

where q(t1, . . . , tn) is a polynomial in t1, . . . , tn.

The random variables Xj and Xk are said to be Q-identically distributed if

ϕj(t) = ϕk(t) exp{q(t)}

where q(.) is a polynomial.

An infinite sequence of random variables {Xi, i ≥ 1} is said to be Q-independent if all

finite subsets of the sequence {Xi, i ≥ 1} are Q-independent.

It is known that two random variables could be Q-independent but not independent. For

instance if X,Y, Z are non-degenerate independent Gaussian random variables, then X + Y

and X + Z are Q-independent but not independent (Kagan and Székely (2016)).

Kagan and Székely (2016) obtained the following theorem characterizing the normal dis-

tribution through linear forms of Q-independent random variables generalizing the results

due to Skitovich (1953,1954), Darmois (1953), Marcinkeiwicz (1938) and Vershik (1964).
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Theorem 2.1: (i) Let X1, . . . Xn be Q-independent random variables and define L =∑n
j=1 ajXj with nonzero aj , 1 ≤ j ≤ n. If the random variable L has a normal distribu-

tion, then each of the random variables Xj , 1 ≤ j ≤ n has the normal distribution.

(ii) Let X1, . . . Xn be Q-independent random variables and define L1 =
∑n

j=1 ajXj and

L2 =
∑n

j=1 bjXj . Suppose that the random variables L1 and L2 are Q-independent. Then

each of Xj , with ajbj ̸= 0, will have the normal distribution.

(iii) Let X1, . . . Xn be Q-independent random variables and define L1 =
∑n

j=1 ajXj and

L2 =
∑n

j=1 bjXj . Suppose that E|Xi|m <∞,m ≥ 1 and the random variables L1 and L2 are

Q-identically distributed satisfying the conditions

|ai| > max{|a1|, . . . , |ai−1|, |ai+1|, . . . , |an|, |b1|, . . . , |bn|}

for some i with 1 ≤ i ≤ n, then every Xj , 1 ≤ ij ≤ n has the normal distribution.

(iv) Let X be a random vector with finite covariance matrix V with rank V ≥ 2. If uncor-

relatedness of two linear forms L1 = a′X and L1 = b′X implies their Q-independence, then

the random vector X is multivariate normal.

3 Main result

Our aim is to obtain a characterization of the normal distribution through Q-independence

of linear forms of Q-independent random variables when the number of summands is infinite

generalizing the work of Ramachandran (1967) and Ibragimov (2013).

Let {Xi, i ≥ 1} be an infinite sequence of Q-independent random variables. Consider the

linear forms

L1 =
∞∑
j=1

ajXj and L2 =
∞∑
j=1

bjXj

where aj , bj , j ≥ 1 are non-zero real numbers. Suppose that the series L1 and L2 converge

almost surely, the random variables L1 and L2 are Q-independent and at least one of the

sequences {ajb−1
j , j ≥ 1}, {a−1

j bj , j ≥ 1} is bounded.

Since the series L1 and L2 are assumed to converge almost surely, it follows that their

distributions of the partial sums of the series L1 and L2 converge weakly to the distributions
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of L1 and L2 respectively which in turn implies that the characteristic functions of the partial

sums converge to the corresponding limiting characteristic functions and this convergence is

uniform on any finite interval. Since the characteristic function of the random variable L1 is

non-zero in an interval around the origin, it follows that there exists an interval around the

origin in which none of the characteristic functions of Xj vanish

Without loss of generality, suppose that

L1 =
∞∑
j=1

Xj , L2 =
∞∑
j=1

cjXj

and that the sequence {cj} is bounded.

Theorem 3.1: Suppose the random variables L1 and L2 are Q-independent and let fj(t)

denote the characteristic function of the random variable Xj for j ≥ 1. Suppose characteristic

functions of the random variables Li, i = 1, 2 satisfy the property

E[exp(itL1)] = Π∞
j=1fj(t) exp[q1(t)]

and

E[exp(itL2)] = Π∞
j=1fj(cjt) exp[q2(t)]

where qi(t), i = 1, 2 are polynomials in t. Then the random variables {Xj , j ≥ 1} are normally

distributed.

Proof: Let ϕi(t) denote the characteristic function of Li for i = 1, 2. Arguments presented

earlier imply that there exists an interval I around the origin such that fj(t) ̸= 0 and

fj(cjt) ̸= 0 for all t ∈ I and for all j ≥ 1. Since L1 and L2 are Q-independent, it follows that

E[eitL1+isL2 ] = E[eitL1 ]E[eisL2 ] exp[q0(t, s)]

where q0(t, s) is a polynomial in t, s. Note that

E[eitL1 ] = E[e
it
∑∞

j=1
Xj ] = Π∞

j=1fj(t) exp[q1(t)]

where q1(t) is a polynomial in t. Similarly

E[eitL2 ] = E[e
it
∑∞

j=1
cjXj ]

= Π∞
j=1fj(cjt) exp[q2(t)]
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and

E[eitL1+isL2 ] = E[e
i
∑∞

j=1
(t+cjs)Xj ]

= Π∞
j=1fj(t+ cjs) exp[q3(t, s)]

where q3(t, s) is a polynomial in t and s. Combining the above relations, it follows that

Π∞
j=1fj(t+ cjs) exp[q3(t, s)]

= Π∞
j=1fj(t) exp[q1(t)]Π

∞
j=1fj(cjs) exp[q2(s)] exp[q0(t, s)].

which implies that

Π∞
j=1fj(t)Π

∞
j=1fj(cjs) = Π∞

j=1fj(t+ cjs) exp[q(t, s)](3. 1)

where q(t, s) is a polynomial in t, s. The infinite products

Π∞
j=1fj(t),Π

∞
j=1fj(cjs) and Π∞

j=1fj(t+ cjs)

exist and are nonzero as the arguments given in Lemma 3.2 prove. We now adapt the methods

in Ibragimov (2013) and Ramachandran (1967). It can be seen that if fj(t), j ≥ 1 satisfy the

above equation, the symmetrical characteristic functions gj(t) = fj(t)fj(−t) = |fj(t)|2, j ≥
1 will also satisfy similar equation. If we can show that all the functions gj(t) are the

characteristic functions of the normal distribution, then, from the Cramer’s theorem (Cramer

(1936)), it follows that all the function fj(t) are the characteristic functions of the normal

distribution. Here after we will assume that the random variables Xj are symmetrically

distributed and hence the functions fj are non-negative and fj(t) = fj(−t), t ≥ 0, j ≥ 1.

Lemma 3.2: All solutions fj(t) of the equation (3.1) are strictly positive, that is, fj(t) > 0

for all t ∈ R.

Proof: Note that the function ϕ1(t) = Π∞
j=1fj(t) is a characteristic function and it is positive

in a neighbourhood of zero. Let t0 be the smallest value of t > 0 for which ϕ1(t0) = 0. Since

ϕ1(t) = Π∞
j=1f1(t), it follows that t0 is a zero of at least one of the functions, say, fk(t).

Observe that, for all |t| < t0, the inequality Π∞
j=1fj(t) > 0 holds. Since the sequence cj , j ≥ 1

is bounded, for sufficiently small s, say, |s| < ϵ, all the functions fj(cjs) are strictly positive.

Therefore

Π∞
j=1fj(t)Π

∞
j=1fj(cjs) > 0
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for |t| < t0, |s| < ϵ. However, at the same time, there exists t1 < t0 and s1, |s1| < ϵ for which

t1 + cks1 = t0 such that

Π∞
j=1fj(t1)Π

∞
j=1fj(cjs1) = Π∞

j=1fj(t1 + cjs1) exp[q(t1, s1)].

Note that the the quantity on the left side of the equation is positive where as the quantity on

the right side of the equation is zero leading to a contradiction. Hence the function fj(t) > 0

for all t ∈ R and for all j ≥ 1.

Proof of Theorem 3.1:The convergence of the three infinite products in the equation (3.1)

is uniform for s, t in any bounded interval I and fj(t) ̸= 0, fj(cjs) ̸= 0 and fj(t + cjs) ̸= 0

for all t,s in I and for all j ≥ 1. Let ψj(t) = log fj(t), j ≥ 1. Note that ψj(0) = log fj(0) = 0.

The equation (3.1) can be written in the form

∞∑
j=1

ψj(t) +
∞∑
j=1

ψj(cjs) =
∞∑
j=1

ψj(t+ cjs) + q(t, s)(3. 2)

where q(t, s) is a polynomial in t, s or equivalently

∞∑
j=1

ψj(t+ cjv) =
∞∑
j=1

ψj(u) +
∞∑
j=1

ψj(cjv)− q(u, v) = A(u) +B(v) + r(u, v) (say)(3. 3)

where ψj , j ≥ 1 are continuous, ψj(0) = 0 and the function r(u, v) is polynomial in u, v.

We note the following properties of uniformly convergent series all of whose terms are

of the same sign. Any sub-series of such a series is uniformly convergent. If the terms of

the series are multiplied by a bounded sequence, then the resulting series is also uniformly

convergent. We now present the arguments of Ramachandran (1967). Since

ψj(u+ cjv) = ψj(u) + ψj(cjv)

trivially if cj = 0, we may subtract from the three series in (3.3) their respective subseries

corresponding to indices j for which cj = 0. The three resulting series are uniformly conver-

gent . Hence, we assume here after that the summations in (3.3) are over those j for which

cj ̸= 0 and the uniform convergence of the series continues to hold for the three series in

the equation (3.3) for u, v in the interval I. Multiplying both sides of the above equation by

(x− u) and integrate with respect to u from 0 to x, we get that∑
j

∫ x

0
ψj(u+ cjv)(x− u)du =

∫ x

0
A(u)(x− u)du+

∫ x

0
B(v)(x− u)du
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+

∫ x

0
r(u, v)(x− u)du

=

∫ x

0
A(u)(x− u)du+B(v)

x2

2
+ x2r1(x, v)

= C(x) +B(v)
x2

2
+ x2r(x, v)

where {ψj , j ≥ 1} are continuous, ψj(0) = 0, j ≥ 1, and r1(x, v) is a polynomial in x, v. In

view of the boundedness of the sequence {cj , j ≥ 1} and the uniform convergence of the series

ψj(cjv) of negative terms, the following equation holds:

∑
j

∫ x

0
ψj(u+ cjv)(x− u)du =

∑
j

∫ x+cjv

cjv
ψj(t)(x− t+ cjv)dt

=
∑
j

∫ x+cjv

0
ψj(t)(x− t+ cjv)dt

−
∑
j

∫ cjv

0
ψj(t)(x− t+ cjv)dt.

Hence

∑
j

∫ x+cjv

0
ψj(t)(x− t+ cjv)dt = C(x) +B1(v)x

2 +B2(v)x+B3(v) + x2r1(x, v)(3. 4)

for some function r1(x, v) which is a polynomial in x, v. The integral on the left side of the

above equation is differentiable twice with respect to v for any fixed x. From the uniform

convergence of the series discussed above, it follows that the series on the left side can be

formally differentiated once and once again with respect to v. Both the derived series are

uniformly convergent and hence the functions on the right side of the equation (3.4) can be

differentiated twice with respect to v for every v ∈ I. Hence the functions Bj(v), j = 1, 2, 3

and the function r1(x, v) are differentiable with respect to v. Differentiating both sides of the

equation with respect to v, we obtain that

∑
j

cj

∫ x+cjv

0
ψj(t)dt = B′

1(v)x
2 +B′

2(v)x+B′
3(v) + x2

dr1(x, v)

dv
(3. 5)

and ∑
j

c2jψj(x+ cjv) = B′′
1 (v)x

2 +B′′
2 (v)x+B′′

3 (v) + x2
d2r1(x, v)

dv2
.(3. 6)
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Here g′(x) denotes the derivative of g(x) with respect to x and g′′(x) denotes the second

derivative of g(x) with respect to x whenever they exist. Let v = 0 in the above equation.Then

we get that ∑
j

c2jψj(x) = P (x) + x2
d2r1(x, v)

dv2
|[v=0] = R(x)(3. 7)

where R(x) is a polynomial in x. Hence

Πj [fj(t)]
c2j = eR(x)(3. 8)

for t ∈ R. Applying Theorem 6.4.2 in Linnik (1964)(cf. Theorem 7.3, Ramachandran (1967)),

it follows that the polynomial R(x) is of degree at most two. Applying the results in Cramer

(1936), we get that the functions fj are characteristic functions of the normal distribution.

If the degree of the polynomial R(x) is one, then all the characteristic functions fj , j ≥ are

degenerate.

Remarks 3.1: Rao (1971) proved that, if Xi, 1 ≤ i ≤ n are independent random vari-

ables, then one can construct p linear forms L1, . . . , Lp of X1, . . . , Xn with p(p − 1)/2 ≤
n ≤ p(p + 1)/2 such that the joint distribution of L1, . . . , Lp determines the distribution of

Xi, 1 ≤ i ≤ n up to Q-identical distributions. This was pointed out in Kagan and Székely

(2016).

Acknowledgement : This work was supported under the scheme ”Ramanujan Chair Pro-

fessor” at the CR Rao Advanced Institute of Mathematics, Statistics and Computer Science,

Hyderabad 500046, India.

References:

Bernstein, S.N. (1941) On one property of Gaussian law, Trudy Leningr. Politekh. Instituta,

3, 21-22 (in Russian).

Cramér, H. (1936) Uber eine eigenschaft der normalen verteilungsfunction, Math. Z., 41,

405-414.

Darmois, G. (1953) Analyse générale des liaisons stochastiques, Rev. Inst. Int. Statist., 21,

2-8.

Ibragimov, I.A. (2013) On the Skitovich-Darmois-Ramachandran theorem, Theory Probab.

Appl., 57, 368-374.

8



Kagan, A.M., Linnik, Yu.V., and Rao, C.R. (1973) Characterization Problems in Mathe-

matical Statistics, Wiley, New York.
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