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Improved Cramér-Rao Type Integral Inequalities

or Bayesian Cramér-Rao Bounds

B.L.S. Prakasa Rao

CR Rao Advanced Institute for Research in Mathematics, Statistics

and Computer science, Hyderabad 500046, India

Abstract: New lower bounds on the mean square error for estimators of random parameter

are obtained as applications of improved Cauchy-Schwarz inequality due to Walker (Statist.

Probab. Lett. 122 (2017), 86-90).

1 Introduction

Cramér-Rao lower bound for the variance of an unbiased estimator of a parameter is well

known for its use in statistical literature. There has been a large amount of work to obtain

Cramér-Rao type integral inequalities leading to lower bounds for the risks associated with

Bayesian estimators. Earlier results in this diretion are due to Schtzenberger (1957) and

Gart (1959). Other works in this direction in the statistical literature are due to Borovkov

and Sakhanenko (1980), Targhetta (1984, 1988, 1990), Shemyakin (1987), Babrovsky et al.

(1987), Brown and Gajek (1990), Prakasa Rao (1992), Ghosh (1993) and Gill and Levit

(1995). In engineering literature, this problem is considered under the subject “random pa-

rameter estimation”. Significant results in this area in the engineering literature are due to

Van trees (1968), Ziv and Zakai (1969), Chazan et al. (1975), Miller and Chang (1978), We-

instein and Weiss (1985), Weiss and Weinstein (1985), Brown and Liu (1993) among others.

Prakasa Rao (1991) gives a comprehensive survey of results obtained in this area till about

1990. Related results on Cramér-Rao type integral inequalities were obtained in Prakasa

Rao (1996, 2000, 2001). In a voluminous work, van Trees and Bell (2007) give a survey of

Bayesian bounds for parameter estimation and nonlinear filtering/tracking and edited a vol-

ume containing selected papers dealing with Bayesian Cramér-Rao bounds, global Bayesian

bounds, hybrid Bayesian bounds, constrained Cramér-rao bounds and their applications to

nonlinear dynamic systems.

It is well known that either the Cramér-Rao inequality giving a lower bound for the

quadratic risk of an estimator or the Bayesian versions of the Cramér-Rao inequality obtained

by several authors are all consequences or applications of the Cauchy-Schwarz inequality

for suitable functions of the observations and the parameter. In a recent paper, Walker
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(2017) obtained an improved Cauchy-Schwarz inequality. Our aim in this short note is

to obtain some Bayesian Cramér-Rao bounds as applications of the improved version of

Cauchy-Schwarz inequality. Walker (2017) obtained a generalized Cramér-Rao inequality as

an application of the improved Cauchy-Schwarz inequality.

2 Main results

Walker (2017) obtained an improved version of the Cauchy-Schwarz inequality which implies

the following probabilistic version.

Theorem 2.1 : If X and Y are random variables defined on a probabilty space (Ω,F , P )
with finite second moments, then

|E(XY )|2 ≤ E(X2)E(Y 2)− (|E(X)|
√
Var(Y )− |E(Y )|

√
Var(X))2.(2. 1)

As has been pointed out by Walker (2017), the inequality (2.1) is a strict improvement

over the Cauchy-Schwarz inequality. This can be seen from the following example due to

Walker (2017). Suppose Y is a random variable with mean zero and variance 1 and X is a

random variable with mean µ and finite variance σ2. Then the Cauchy-Schwarz inequality

implies

[E(XY )]2 ≤ E(X2)E(Y 2) = (σ2 + µ2)(2. 2)

where as Theorem 2.1 implies that

[E(XY )]2 ≤ Var(X)E(Y 2) = σ2.(2. 3)

It is obvious that the upper bound given by the inequality (2.3) is better than the upper

bound given by the inequality (2.2).

Suppose a random variable Y has mean zero but positive variance and X is another

random variable with finite variance. Then it follows that

|E(XY )|2 ≤ E(X2)E(Y 2)− |E(X)|2E(Y 2) = Var(X)E(Y 2).(2. 4)

by Theorem 2.1. Hence

E(X2) ≥ (E(X))2 +
|E(XY )|2

E(Y 2)

and we have the following corollary.
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Corollary 2.1: If X and Y are random variables defined on a probability space (Ω,F , P )
with finite second moments and if E(Y ) = 0, , then

E(X2) ≥ (E(X))2 +
|E(XY )|2

E(Y 2)
.(2. 5)

We now discuss some applications of the inequality derived in Corollary 2.1.

Let Z be a random variable defined on a probability space (Ω,F , Pθ) where θ ∈ Θ ⊂ R.

Suppose that the parameter θ has a prior density λ(θ) with respect to the Lebesgue measure

on R. Let us consider a function ψ(z, θ) such that Eθ[ψ(Z, θ)|Z] = 0 where Eθ(ψ(Z, θ)|Z)
denotes the expectation of the random variable ψ(Z, θ) with respect to the posterior distribu-

tion of θ given Z. Let E(ψ(Z, θ)) denote the expectation of the random variable ψ(Z, θ) with

respect to the joint distribution of the random vector (Z, θ). Then, for any random variable

ℓ(Z), with E[|ℓ(Z)|] <∞,

E(ℓ(Z)ψ(Z, θ)) = E[E(ℓ(Z)ψ(Z, θ)|Z)] = E[ℓ(Z)E(ψ(Z, θ)|Z)] = 0(2. 6)

and hence

E((θ − ℓ(Z))ψ(Z, θ)) = E(θψ(Z, θ)).(2. 7)

Applying the inequality given in Corollary 2.1 for the random variable X = θ− ℓ(Z) and for

the random variable Y = ψ(Z, θ) with conditional mean zero given the random variable Z

and finite second moment, we obtain that

E([θ − ℓ(Z)]2) ≥ (E[θ − ℓ(Z)])2 +
(E[θψ(Z, θ)])2

E([ψ(Z, θ)]2)
.(2. 8)

Special cases

(i) Suppose we choose ψ(Z, θ) = θ−E(θ|Z). It is obvious that E[ψ(Z, θ)|Z] = 0. Applying

the inequality (2.8), we get that

E([θ − ℓ(Z)]2) ≥ (E[θ − ℓ(Z)])2 +
(E[θψ(Z, θ)])2

E([ψ(Z, θ)]2)

= (E[θ − ℓ(Z)])2 +
(E[θ(θ − E(θ|Z))])2

E([θ − E(θ|Z)]2)

= (E[θ − ℓ(Z)])2 +
(E[(θ − E(θ|Z))(θ − E(θ|Z))])2

E([θ − E(θ|Z)]2)
= (E[θ − ℓ(Z)])2 + E([θ − E(θ|Z)]2).
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(ii) Let λ(.) denote a prior density of the parameter θ and suppose that f(z, θ) is the

probability density function of a random variable Z given the parameter θ. Then the joint

density of the random vector (Z, θ) is g(z, θ) = f(z, θ)λ(θ). Let π(θ|z) denote the posterior

density function of the parameter θ given the observation z. Let I(θ) denote the Fisher

information in the observation Z given the parameter θ. Suppose we choose

ψ(z, θ) =
∂ log(π(θ|z))

∂θ
.

Observe that E[ψ(Z, θ)|Z] = 0 and it is easy to check that

E([θ − ℓ(Z)]2) ≥ (E[θ − ℓ(Z)])2 +
(E[(θ − ℓ(Z))ψ(Z, θ)])2

E([ψ(Z, θ)]2)
.(2. 9)

Let

I(λ) = E[(
∂ log λ(θ)

∂θ
)2]

and

I(θ) = E[(
∂ log f(Z, θ)

∂θ
)2|θ].

Applying the inequality given by Corollary 2.1, we get that

E([θ − ℓ(Z)]2) ≥ (E[θ − ℓ(Z)])2 +
(E[(θ − ℓ(Z))ψ(Z, θ)])2

E([ψ(Z, θ)]2)

= (E[θ − ℓ(Z)])2 +
(E[θψ(Z, θ)])2

E([ψ(Z, θ)]2)

= (E[θ − ℓ(Z)])2 +
(E[θψ(Z, θ)])2

E(I(θ)) + I(λ)
.

(iii) Let λ(.) denote the prior density of the parameter θ and suppose that f(z, θ) is the

probability density function of the random variable Z given the parameter θ. Then the joint

density of the random vector (Z, θ) is g(z, θ) = f(z, θ)λ(θ). We will now obtain an improved

version of the van Trees inequality (cf. van Trees (1968), Gill and Levit (1995)). Let

ψ(z, θ) =
∂ log(f(z, θ)λ(θ))

∂θ
.

Assuming that the prior density λ(θ) converges to zero as θ tends to the boundary of the set

Θ , it follows that ∫
Θ

d[f(z, θ)λ(θ)]

dθ
dθ = [f(z, θ)λ(θ)]∂Θ = 0(2. 10)
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and ∫
Θ
θ
d[f(z, θ)λ(θ)]

dθ
dθ = [θf(z, θ)λ(θ)]∂Θ −

∫
Θ
f(z, θ)λ(θ)dθ

= −
∫
Θ
f(z, θ)λ(θ)dθ.

Using the above equations, it follows that∫ ∞

−∞

∫
Θ
(θ − ℓ(z))

d[f(z, θ)λ(θ)]

dθ
dθdz =

∫ ∞

−∞

∫
Θ
f(z, θ)λ(θ)dθdz

= 1.

Observe that E[ψ(Z, θ)|Z] = 0. Applying Corollary 2.1, we get that

E([θ − ℓ(Z)]2) ≥ (E[θ − ℓ(Z)])2 +
(E[(θ − ℓ(Z))ψ(Z, θ)])2

E([ψ(Z, θ)]2)

= (E[θ − ℓ(Z)])2 +
(E[θψ(Z, θ)])2

E([ψ(Z, θ)]2)

= (E[θ − ℓ(Z)])2 +
(E[θψ(Z, θ)])2

E(I(θ)) + I(λ)
.

(iv) Let λ(.) denote the prior density of the parameter θ and suppose that f(z, θ) is the

probability density function of the random variable Z given the parameter θ. Then the joint

density of the random vector (Z, θ) is g(z, θ) = f(z, θ)λ(θ). Define the likelihood ratio given

by

L(z; θ1, θ2) =
g(z, θ1)

g(z, θ2)
.

For any fixed h ̸= 0, and 0 < s < 1, define

ψ(z, θ) = Ls(z; θ + h, θ)− L1−s(z; θ − h, θ).

Following Weiss and Weinstein (1985), it follows that

E[ℓ(Z)ψ(Z, θ)] = 0

and

E[θψ(Z, θ)] = −hE[L1−s(Z; θ − h, θ)]

(cf. Weiss and Weinstein (1985)). As an application of Corollary 2.1, we get that

E([θ − ℓ(Z)]2) ≥ (E[θ − ℓ(Z)])2 +
h2(E[L1−s(Z; θ − h, θ)])2

E[ψ(Z, θ)2]
.(2. 11)
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Following arguments given in Weiss and Weinstein (1985), it follows that

E([θ − ℓ(Z)]2) ≥ (E[θ − ℓ(Z)])2 +
h2e2µ(s,h)

eµ(2s,h) + eµ(2s−1),h) − 2eµ(s,2h)
(2. 12)

where

µ(s, h) = logE[Ls(Z; θ + h, θ)]

= log[

∫ ∞

−∞
dz

∫ ∞

−∞
[g(z, θ + h)]s[g(z, θ)]1−sdθ]

where g(z, θ) is the joint probability density function of the random vector (Z, θ).

In a similar fashion, it is possible to improve other lower bounds for the risk of Bayesian

estimators using Corollary 2.1 as applications of the improved Cauchy-Schwarz inequality

due to Walker (2017) and also obtain similar Bayesian bounds for functions of a parameter.
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