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Abstract

We obtain a characterization for probability measures on a
separable Hilbert space X based on linear forms of Q-independent
random elements taking values in X. As a special case, we obtain
a characterization of probability distributions on Rk through linear
functions of Q-independent k-dimensional random vectors.
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1 Introduction

If X1 and X2 are independent standard normal random variables, it is

known that the ratio X1/X2 has the standard Cauchy distribution. However

the converse is not true. For instance, let Y1 = 1
X1

and Y2 = 1
X2
, then

Y1 and Y2 are independent random variables but they do not have the

standard normal distribution and yet Y2/Y1 = X1/X2 has the standard

Cauchy distribution. Kotlarski (1967) has proved that, if X1, X2 and X3 are

independent identically distributed random variables such that (Z1, Z2) has

the bivariate Cauchy distribution where Z1 = X1
X2

and Z2 = X1
X3
,, then the
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random variables X1, X2 and X3 have normal distributions. He proved that

if X1, X2 and X3 are three independent real-valued random variables and

if the characteristic function of the bivariate random vector (Z1, Z2) where

Z1 = X1 −X2, Z2 = X1 −X3 does not vanish, then the distribution of the

random vector (Z1, Z2) determines the distributions of the random variables

X1, X2 and X3 up to changes in location. Kotlarski’s result has found

applications in identification and estimation of auction models in economics

(cf. Krasnokutskaya (2011)). It can be used when one observes two

error-contaminated measurements of the same variable (when the errors are

independent). The joint distribution of the contaminated random variables

identifies the distributions of the true variable as well as that of the errors

up to location. Kotlarski (1966) extended his result to random elements

taking values in a Hilbert space. Prakasa Rao (1968) (cf. Prakasa Rao

(1992)) generalized the result to random elements taking values in a locally

compact Abelian group. Motivation for study of probability measures on

Hilbert spaces arises from the intrinsic mathematical interest but also from

the applications to functional data analysis where the observations are curves

over a specified region, for instance, the observations are functions in the

space of square integrable functions L2(R) which is a Hilbert space. It is

now known that functional data analysis has applications in the study of

stochastic modeling of trade through e-commerce. Another motivation for

study is in the area of signal processing. Suppose X3 = {X3(t), 0 ≤ t ≤
T}, i = 1, 2 is a signal sent over two different channels and Xi = {Xi(t), 0 ≤
t ≤ T}, i = 1, 2 are independent additive components contaminating the

original signal X3 transmitted over these channels. It is of interest to know

whether the true signal X3 = {X3(t), 0 ≤ t ≤ T} can be recovered from the

observed data {Zi(t), 0 ≤ t ≤ T}, i = 1, 2 where {Z1(t) = X1(t) +X3(t), 0 ≤
t ≤ T} and {Z2(t) = X2(t)+X3(t), 0 ≤ t ≤ T}. If the processes Xi, i = 1, 2, 3

are assumed to have sample paths in the space L2[0, T ], then the processes

Xi, i = 1, 2, 3 can be considered as random elements taking values in the
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Hilbert space and it follows that the joint probability measure of (Z1, Z2)

determines the probability measures of Xi, i = 1, 2, 3 up to changes in

location under some conditions. In a recent article, Kagan and Szekely

(2016) introduced the notion of Q-independence for real-valued random

variables and studied characterization properties of a Gaussian distribution

based on linear forms of Q-independent random variables. It is obvious that

independence of random variables implies their Q-independence. However

it is known that Q-independence of a set of real-valued random variables

does not imply the independence of the set. For instance, if X,Y, Z are

non-degenerate independent random variables, then X + Y and X + Z are

Q-independent but not independent. Prakasa Rao (2016, 2017) extended

Kotlarski’s theorem for Q-independent random variables and Q-conditional

independent random variables. Our aim in this paper is to extend the result

obtained by Kotlarski (1966) to the Q-independent case for Hilbert space

valued random elements. As a special case, we obtain a characterization

of probability distributions for multi-dimensional random vectors through

linear functions of Q-independent random vectors. These results generalize

Kotlarski’s results from the independent case to the Q-independent case

which is a strictly larger class of random variables.

2 Preliminaries

Suppose X is a separable Hilbert space. Let (x, y), x ∈ X, y ∈ X denote the

inner product between x and y. Let ||x|| denote the norm of the element

x ∈ X. Suppose ψ is a random element defined on a probability space

(Ω,F ,P) taking values in the space X and let µψ be the probability measure

generated by the random element ψ. The function

µ̂ψ(y) =

∫
X
ei(x,y)µψ(dx), y ∈ X
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is the characteristic function of the probability measure µψ. It is known that

(i)the function µ̂ψ(y) is a uniformly continuous function of y in the norm

topology;

(ii)the function µ̂ψ(.) determines the probability measure µψ uniquely;

(iii) ˆ(µψ ∗ µη)(y) = µ̂ψ(y)µ̂η(y), y ∈ X where * denotes the convolution

operation;

(iv) µ̂ψ(0) = 1 where 0 is the identity element in X, and

(v) |µ̂ψ(y)| ≤ 1, y ∈ X.

Properties of probability measures on Hilbert spaces are investigated in

Grenander (1963) and Parthasarathy (1967).

Let f(y) be a function defined on the space X and let h ∈ X. Let ∆h be

the finite difference operator defined by

∆hf(y) = f(y + h)− f(y).

The function f(y), y ∈ X is called a polynomial on X if

∆n+1
h f(y) = 0

for some n ≥ 0 and for all y, h ∈ X. The minimal n for which this

equality holds is called the degree of the polynomial f(y). Let ψ1, . . . , ψn be

random elements with values in the Hilbert Space X. Following Kagan and

Szekely (2016), we define the notion of Q-independence for random elements

ψ1, . . . , ψn with values in the space X. The random elements ψ1, . . . , ψn,

taking values in the Hilbert space X, are said to be Q-independent if their

joint characteristic function can be represented in the form

µ̂(ψ1,...,ψn)(y1, . . . , yn) = (Πnj=1µ̂ψj
(yj)) exp[q(y1, . . . , yn)], yi ∈ X, 1 ≤ i ≤ n

(2.1)



JI
SA
-D
R
A
FT

Characterization of Probability Measures 5

where q(y1, . . . , yn) is a continuous polynomial on the space Xn with

q(0, . . . , 0) = 0. Here Xn denotes the n-fold tensor product of the Hilbert

Space X.

3 Main result

We now extend the result proved in Kotlarski (1966) to Q-independent

random elements taking values in a Hilbert space X. We will now prove

a lemma which will be used in the sequel.

Lemma 3.1: Let X be a Hilbert space and bi, 1 ≤ i ≤ n be scalars such that

bi ̸= bj ̸= 0 for i ̸= j. Consider the functional equation

n∑
j=1

ψj(u+ bjv) = P (u) +Q(v) +R(u, v), u, v ∈ X (3.1)

on the space X where ψj(u), P (u) and Q(u) are functions on the Hilbert

Space X and R(u, v) is a polynomial on X ⊗ X. Then P (y) and Q(y) are

polynomials on X.

Proof : We use the finite-difference method for proving this lemma

(following the techniques in Kagan, Linnik and Rao (1973) and Feldman

(2017)). Let h1 be an arbitrary element in the Hilbert space X. Let

k1 = −b−1
n h1. Then h1 + bnk1 = 0. Let us substitute u + h1 for u and

v + k1 for v in the equation (3.1). Subtracting the equation (3.1) from the

resulting equation, we get that

n−1∑
j=1

∆ℓ1jψj(u+ bjv) = ∆h1P (u)+∆k1Q(v)+∆(h1,k1)R(u, v), u, v ∈ X (3.2)

where ℓ1j = h1 + bjk1 = (bj − bn)k1, 1 ≤ j ≤ (n− 1). Let h2 be an arbitrary

element of the Hilbert space X. Let k2 = −b−1
n−1h2. Then h2 + bn−1k2 = 0.
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Substitute u + h2 for u and v + k2 for v in the equation (3.2). Subtracting

equation (3.2) from the resulting equation, we obtain that

n−2∑
j=1

∆ℓ2j∆ℓ1jψj(u+ bjv) = ∆h2∆h1P (u) + ∆k2∆k1Q(v)

+∆(h2,k2)∆(h1,k1)R(u, v) (3.3)

for (u, v) ∈ Xwhere ℓ2j = h2 + bjk2 = (bj − bn−1)k2, 1 ≤ j ≤ (n − 2).

Proceeding by similar arguments, we get the equation

∆ℓn−1,1∆ℓn−2,1 . . .∆ℓ11ψ1(u+ b1v)

= ∆hn−1∆hn−2 . . .∆h1P (u)

+∆kn−1∆kn−2 . . .∆k1Q(v)

+∆(hn−1,kn−1)∆(hn−2,kn−2) . . .∆(h1,k1)R(u, v) (3.4)

for u, v ∈ X where hm are arbitrary elements of X , km = −b−1
n−m+1hm, 1 ≤

m ≤ n − 1 and ℓmj = hm + bjkm = (bj − bn−m+1)km, 1 ≤ j ≤ n −m. Let

hn be an arbitrary element in X. Let kn = −b−1
1 hn. Then hn + b1kn = 0.

Substituting u+hn for u and v+kn for v in the equation (3.4) and subtracting

the equation (3.4) from the resulting equation, we obtain that

∆hn∆hn−1 . . .∆h1P (u)

+∆kn∆kn−1 . . .∆k1Q(v)

+∆(hn,kn)∆(hn−2,kn−2) . . .∆(h1,k1)R(u, v) = 0 (3.5)

for u, v ∈ X. Let hn+1 be an arbitrary element of the space X. Substituting

hn+1 for u in the equation (3.5) and subtracting the equation (3.5) from the
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resulting equation, we observe that

∆hn+1∆hn∆hn−1 . . .∆h1P (u)

+∆(hn+1,0)∆(hn,kn)∆(hn−1,kn−1) . . .∆(h1,k1)R(u, v) = 0 (3.6)

for u, v ∈ X.If h and k are arbitrary elements of the Hilbert space X, then,

for some ℓ,

∆ℓ+1
(h,k)R(u, v) = 0, u, v ∈ X (3.7)

since R(u, v) is a polynomial on X ⊗ X. Since hm, 1 ≤ m ≤ n + 1 are

arbitrary elements in the space X, we can substitute h1 = . . . = hn+1 = h

in the equation (3.6) and apply the operator ∆ℓ+1
(h,k) to both the sides of the

resulting equation. Equation (3.7) implies that

∆ℓ+n+2
h P (u) = 0, u, h ∈ X. (3.8)

Hence P (u) is a polynomial on the Hilbert space X. Similar arguments prove

that Q(v) is also a polynomial on X.

Remarks : The proof given above follows arguments similar to those given

in Kagan et al. (1973) for functions defined on the real line and by Feldman

(2017) for functions defined on groups. We have shown that the arguments

continue to hold for functions defined on a Hilbert Space and give details

here for completeness.

Theorem 3.2: Let ψ1, ψ2 and ψ3 be three Q-independent random elements

taking values in a separable Hilbert space X. Let Z1 = ψ1 + ψ2 and

Z2 = ψ2 + ψ3. If the characteristic function of the random vector (Z1, Z2)

does not vanish, then the probability measure of the random vector (Z1, Z2)

determines the characteristic functions of ψ1, ψ2, ψ3 up to multiplication by
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the exponentials of polynomials.

Proof: Let λ(Z1,Z2) denote the joint probability measure of the random

vector (Z1, Z2). Let µψj
denote the probability measure of the random

element ψj for j = 1, 2, 3. The joint characteristic function of the random

vector (Z1, Z2) is given by

λ̂(Z1,Z2)(u, v) = E[exp(i(Z1, u) + i(Z2, v))], u, v ∈ X

= E[exp(i(ψ1 + ψ2, u) + i(ψ2 + ψ3, v))], u, v ∈ X

= E[exp(i(ψ1, u) + i(ψ2, u+ v) + i(ψ3, v))], u, v ∈ X

= µ̂ψ1(u)µ̂ψ2(u+ v)µ̂ψ3(v) exp[q1(u, u+ v, v)], u, v ∈ X

where q1(y1, y2, y3) is a continuous polynomial on the space X ⊗ X ⊗ X

by the Q-independence of the random elements ψ1, ψ2, ψ3. Suppose that

ηi, i = 1, 2, 3 is another set of Q-independent random elements such that the

joint probability measure of the random vector (T1, T2) is the same as the

joint probability measure of the random vector (Z1, Z2) where T1 = η1 + η2

and T2 = η2 + η3. By the calculations described above, it is easy to check

that

λ̂(Z1,Z2)(u, v) = µ̂η1(u)µ̂η2(u+ v)µ̂η3(v) exp[q2(u, u+ v, v)], u, v ∈ X, (3.9)

where q2(y1, y2, y3) is a continuous polynomial on the space X ⊗ X ⊗ X

by the Q-independence of the random elements η1, η2, η3. Since the joint

probability measures of the random vectors (Z1, Z2) and (T1, T2) are the

same with non-vanishing characteristic functions, by hypothesis, it follows

that µ̂ψj
(u) ̸= 0, u ∈ Y, j = 1, 2, 3 and µ̂ηj (v) ̸= 0, v ∈ X, j = 1, 2, 3 and

µ̂ψ1(u)µ̂ψ2(u+ v)µ̂ψ3(v) exp[q1(u, u+ v, v)]

= µ̂η1(u)µ̂η2(u+ v)µ̂η3(v) exp[q2(u, u+ v, v)] (3.10)
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for u, v ∈ X. Let

ζi(u) = log[
µ̂ψi

(u)

µ̂ηi(u)
], u ∈ X, i = 1, 2, 3 (3.11)

where log µ̂ψi
(u) denotes the continuous branch of the logarithm of the

characteristic function µ̂ψi
(u) with log µ̂ψi

(0) = 0. The equations derived

above imply that

ζ1(u) + ζ2(u+ v) + ζ3(v) = q3(u, u+ v, v), u, v ∈ X (3.12)

where q3(y1, y2, y3) is a continuous polynomial on the space X ⊗ X ⊗ X.

Hence

ζ2(u+ v) = −ζ1(u)− ζ3(v) + q3(u, u+ v, v), u, v ∈ X.

Applying Lemma 3.1, it follows that ζ1(u) and ζ3(u) are polynomials in

u ∈ X. It can be checked that ζ2(u), i = 1, 3 is also a polynomial in u ∈ X

from the equation (3.11). Hence

µ̂ψi
(u) = µ̂ηi(u) exp[qi(u)], u ∈ X, i = 1, 2, 3 (3.13)

where qi(u), i = 1, 2, 3 are continuous polynomials on X with qi(0) = 0, i =

1, 2, 3. This completes the proof of Theorem 3.2.

Remarks: Results obtained here can be extended to linear forms of n Q-

independent random elements as discussed in Prakasa Rao (2017) for linear

forms of Q-independent real valued random variables.

4 Special Case

As a special case of the results obtained in the previous section, we now

obtain characterizations for probability measures for Q-independent multi-

dimensional random vectors.
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LetX1, . . . ,Xn be k-dimensional random vectors defined on a probability

space (Ω,F ,P). Let ϕi(t) denote the joint characteristic of the random vector

Xi, i = 1, . . . , n. The collection X1, . . . ,Xn is said to be Q-independent if

the joint characteristic function of the random vector (X1, . . . ,Xn) can be

represented as

ϕ(X1,...,Xn)(t1, . . . , tn) = Πni=1ϕi(ti) exp[q(t1, . . . , tn)], t1, . . . , tn ∈ Rk

where q(t1, . . . , tn) is a polynomial in the components of t1, . . . , tn. Two

random vectors Xj and Xk are said to be Q-identically distributed if

ϕj(t) = ϕk(t) exp[q(t)]

where q(t) is a polynomial in the components of the vector t. It is known

that two random variables could be Q-independent but not independent.

For instance, if X,Y, Z are non-degenerate independent Gaussian random

variables, then X + Y and X + Z are Q-independent but not independent.

As a consequence of Theorem 3.2, we get the following result

characterizing probability measures on the space Rk.

Theorem 4.1: Let X1,X2 and X3 be three Q-independent k-dimensional

random vectors. Let Z1 = X1 +X2 and Z2 = X2 +X3. If the characteristic

function ϕ(Z1,Z2)(t1, t2) of the 2k-dimensional random vector (Z1,Z2) does

not vanish, then the characteristic function of the random vector (Z1,Z2)

determines the characteristic functions of the k-dimensional random vectors

X1,X2 and X3 up to multiplication by the exponentials of polynomials in the

components of t1, t2.

Remarks : This result can be extended to n k-dimensional Q-independent

random vectors generalizing Theorem 3.3 in Prakasa Rao (2017).
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